数学物理学报 ›› 2024, Vol. 44 ›› Issue (2): 361-375.

• • 上一篇    下一篇

Banach 空间上一类非稠定时滞微分方程的概自守性

郑兰玲(),丁惠生*()   

  1. 江西师范大学数学与统计学院 南昌 330022
  • 收稿日期:2023-07-24 修回日期:2024-01-25 出版日期:2024-04-26 发布日期:2024-04-07
  • 通讯作者: * 丁惠生,Email:dinghs@mail.ustc.edu.cn
  • 作者简介:郑兰玲,Email:202150000054@jxnu.edu.cn
  • 基金资助:
    国家自然科学基金(12361023);江西省双千计划(jxsq2019201001);江西师范大学研究生创新基金(YJS2022058)

Almost Automorphy for a Class of Delay Differential Equations with Non-densely Defined Operators on Banach Spaces

Zheng Lanling(),Ding Huisheng*()   

  1. School of Mathematics and Statistics, Jiangxi Normal University, Nanchang 330022
  • Received:2023-07-24 Revised:2024-01-25 Online:2024-04-26 Published:2024-04-07
  • Supported by:
    NSFC(12361023);Two Thousand Talents Program of Jiangxi Province(jxsq2019201001);Graduate Innovation Fund of Jiangxi Normal University(YJS2022058)

摘要:

该文主要研究 Banach 空间 $ X $ 上一类有限时滞微分方程 $u'(t)=Au(t)+Lu_t+f(t,u_t),\ t\in \mathbb {R}$ 的概自守性, 其中 $ A $ 为非稠定的 Hille-Yosida 算子, $ L $ 为有界线性算子, $ f $ 为二元 $ S^p$-概自守函数. 相比已有相关研究结果, 该文不要求 Hille-Yosida 算子生成的半群具有紧性, 且仅在 $ f $ 具有更弱的 Lipschitz 假设和比概自守性更弱的 $ S^p$-概自守性假设下, 得到了上述时滞微分方程的解具有紧概自守性 (比概自守性更强). 此外, 该文还把抽象结果应用到一类来源于年龄结构模型的偏微分方程.

关键词: Hille-Yosida 算子, 概自守性, 概周期性, 抽象时滞微分方程

Abstract:

This paper is mainly concerned with almost automorphy for a class of finite delay differential equations $ u'(t)=Au(t)+Lu_t+f(t,u_t),\ t\in \mathbb {R} $ on a Banach space $ X $, where $ A $ is a Hille-Yosida operator with the domain being not dense, $ L $ is a bounded linear operator, and $ f $ is a binary $ S^p$-almost automorphic function. Compared with the previous research results, we do not require the semigroup generated by the Hille-Yosida operator to be compact, and only under weaker Lipschitz hypothesis of $ f $ and $ S^p$-almost automorphy hypothesis, which is weaker than almost automorphy, of $ f $, the solution of the above delay differential equation is showed to be compact almost automorphic (stronger than almost automorphic). Moreover, the abstract results are applied to a class of partial differential equations arising in age-structured models.

Key words: Hille-Yosida operator, Almost automorphy, Almost periodicity, Abstract delay differential equation

中图分类号: 

  • O177.92