[1] |
Guo J, Xiao J X, Zhao H J, et al. Global solutions to a hyperbolic-parabolic coupled system with large initial data. Acta Math Sci, 2009, 29B(3): 629-641
|
[2] |
Horstmann D. From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. Jahresbericht der Deutschen Mathematiker-Vereinigung, 2003, 105: 103-165
|
[3] |
Hou Q Q, Wang Z A, Zhao K. Boundary layer problem on a hyperbolic system arising from chemotaxis. J Differential Equations, 2016, 261: 5035-5070
|
[4] |
Hsiao L, De Mottoni P. Existence and uniqueness of the Riemann problem for a nonlinear system of conservation laws of mixed type. Transactions of the American Mathematical Society, 1990, 332(2): 121-158
doi: 10.1090/tran/1992-332-01
|
[5] |
He F, Wang Z, Chen T T. The shock waves for a mixed-type system from chemotaxis. Acta Math Sci, 2023, 43B(4): 1717-1734
|
[6] |
Keller E F, Segel L A. Model for chemotaxis. J Theoretical Biology, 1971, 30(2): 225-234
doi: 10.1016/0022-5193(71)90050-6
|
[7] |
Keller E F, Segel L A. Traveling bands of chemotactic bacteria: a theoretical analysis. J Theoretical Biology, 1971, 30(2): 235-248
doi: 10.1016/0022-5193(71)90051-8
|
[8] |
Keller E F, Segel L A. Initiation of slime mold aggregation viewed as an instability. J Theoretical Biology, 1970, 26(3): 399-415
doi: 10.1016/0022-5193(70)90092-5
|
[9] |
Li H C, Zhao K. Initial-boundary value problems for a system of hyperbolic balance laws arising from chemotaxis. J Differential Equations, 2015, 258: 302-338
|
[10] |
Li T, Pan R, Zhao K. Global dynamics of a hyperbolic-parabolic model arising from chemotaxis. SIAM J Appl Math, 2012, 72: 417-443
|
[11] |
Li J, Wang L, Zhang K. Asymptotic stability of a composite wave of two traveling waves to a hyperbolic-parabolic system modeling chemotaxis. Math Methods Appl Sci, 2013, 36: 1862-1877
doi: 10.1002/mma.v36.14
|
[12] |
Li T, Wang Z A. Nonlinear stability of travelling waves to a hyperbolic-parabolic system modeling chemotaxis. SIAM J Appl Math, 2009, 70: 1522-1541
|
[13] |
Li T, Liu H, Wang L. Oscillatory traveling wave solutions to an attractive chemotaxis system. J Differential Equation, 2016, 261: 7080-7098
|
[14] |
Li T, Mathur N. Rienmann problem for a non-strictly hyperbolic system in chemotaxis. Discrete and Continuous Dynamical System Series B, 2022, 27(4): 2173-2187
doi: 10.3934/dcdsb.2021128
|
[15] |
Li J Y, Li T, Wang Z A. Stability of traveling waves of the Keller-Segel system with logarithmic sensitivity. Math Models Methods Appl Sci, 2014, 24: 2819-2849
|
[16] |
Smoller J. Shock Waves and Reaction-Diffusion Equations. New York: Springer-Verlag, 1994
|
[17] |
Zhang M, Zhu C J. Global existence of solutions to a hyperbolic-parabolic system. Proc Amer Math Soc, 2007, 135(4): 1017-1027
doi: 10.1090/S0002-9939-06-08773-9
|