[1] |
Korteweg D J, De Vries G. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Phil Mag, 1895, 39(5): 422-443
doi: 10.1080/14786449508620739
|
[2] |
Kato T. Quasi-linear equation of evolution, with applications to partical differential equations//Spectral Theorey and Differential Equation. Berlin: Springer-Verlag, 1975, 448: 25-70
|
[3] |
Kato T. On the Korteweg-de Vries equation. Manuscripta Math, 1979, 28(1): 89-99
doi: 10.1007/BF01647967
|
[4] |
Lax P D. Integrals of nonlinear equations of evolution and solitary waves. Comm Pure Appl Math, 1968, 21(5): 467-490
doi: 10.1002/cpa.v21:5
|
[5] |
Camassa R, Holm D D. An integrable shallow water equation with peaked solitons. Phys Rev Letters, 1993, 71(11): 1661-1664
doi: 10.1103/PhysRevLett.71.1661
|
[6] |
Fuchssteiner B, Fokas A S. Symplectic structures, their Backlund transformations and hereditary symmetries. Physica D: Nonlinear Phenomena, 1981, 4(1): 47-66
doi: 10.1016/0167-2789(81)90004-X
|
[7] |
Camassa R, Holm D D, Hyman J M. A new integrable shallow water equation. Adv Appl Mech, 1994, 31: 1-33
|
[8] |
Constantin A. The Hamiltonian structure of the Camassa-Holm equation. Expo Math, 1997, 15: 53-85
|
[9] |
Constantin A, Strauss W A. Stability of peakons. Comm Pure Appl Math, 2000, 53(5): 603-610
doi: 10.1002/(ISSN)1097-0312
|
[10] |
Constantin A, Strauss W A. Stability of the Camassa-Holm solitons. J Nonlinear Sci, 2002, 12(4): 415-422
doi: 10.1007/s00332-002-0517-x
|
[11] |
Bressan A, Constantin A. Global conservative solutions of the Camassa-Holm equation. Arch Rat Mech Anal, 2007, 183(2): 215-239
doi: 10.1007/s00205-006-0010-z
|
[12] |
Bressan A, Constantin A. Global dissipative solutions of the Camassa-Holm equation. Anal Appl, 2007, 5(1): 1-27
|
[13] |
Constantin A. Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Ann lnst Fourier, 2000, 50(2): 321-362
|
[14] |
Constantin A, Escher J. Global existence and blow-up for a shallow water equation. Annali Sc Norm Sup Pisa, 1998, 26(2): 303-328
|
[15] |
Constantin A, Escher J. Global weak solutions for a shallow water equation. Indiana Univ Math J, 1998, 47: 1527-1545
|
[16] |
Danchin R. A few remarks on the Camassa-Holm equation. Differ Intergal Equ, 2001, 14(8): 953-988
|
[17] |
Danchin R. A note on well-posedness for Camassa-Holm equation. J Differ Equations, 2003, 192(2): 429-444
doi: 10.1016/S0022-0396(03)00096-2
|
[18] |
Fuchssteiner B. Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa-Holm equation. Physica D: Nonlinear Phenomena, 1996, 95(3/4): 229-243
doi: 10.1016/0167-2789(96)00048-6
|
[19] |
Olver P J, Rosenau P. Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support. Phys Rev E, 1996, 53(2): 1900-1906
pmid: 9964452
|
[20] |
Fu Y, Gui G L, Liu Y, Qu C Z. On the Cauchy problem for the integrable modified Camassa-Holm equation with cubic nonlinearity. J Differ Equations, 2013, 255(7): 1905-1938
doi: 10.1016/j.jde.2013.05.024
|
[21] |
Gui G L, Liu Y, Olver P J, Qu C Z. Wave-breaking and peakons for a modified Camassa-Holm equation. Comm Math Phys, 2013, 319(3): 731-759
doi: 10.1007/s00220-012-1566-0
|
[22] |
Wu X L, Guo B L. The exponential decay of solutions and traveling wave solutions for a modified Camassa-Holm equation with cubic nonlinearity. J Math Phys, 2014, 55(8): 081504
doi: 10.1063/1.4891989
|
[23] |
Du L J, Wu X L. Global well-posedness of a two-component b-family equations in $ H^{s-1,p} \left (\mathbb{R} \right )\times H^{s,p} \left (\mathbb{R} \right ) $. J Math Fluid Mech, 2022, 24(4): 100
doi: 10.1007/s00021-022-00735-x
|
[24] |
Liu Z Y, Wu X L. Well-posedness and blow-up phenomena for the Camassa-Holm equation in $ H^{s,p} \left (\mathbb{R} \right ) $. [2024-2-26]. https://doi.org/10.22541/au.170668925.50901220/v1
|
[25] |
Pazy A. Semigroup of Linear Operators and Applications to Partial Differential Equations. New York: Springer-Verlag, 1986
|