[1] |
Zhao C D, Caraballo T, Łukaszewicz G. Statistical solution and Liouville type theorem for the Klein-Gordon-Schrödinger equations. J Differ Equations, 2021, 281: 1-32
|
[2] |
Missaoui S. Regularity of the attractor for a coupled Klein-Gordon-Schrödinger system in $\mathbb{R}^3$ nonlinear KGS system. Commun Pur Appl Anal, 2022, 21(2): 567-584
|
[3] |
Zou G A, Wang B, Sheu T W H. On a conservative Fourier spectral Galerkin method for cubic nonlinear Schrödinger equation with fractional Laplacian. Math Comput Simulat, 2020, 168: 122-134
|
[4] |
Fu Y Y, Cai W J, Wang Y S. Structure-preserving algorithms for the two-dimensional fractional Klein-Gordon-Schrödinger equation. Appl Numer Math, 2020, 156: 77-93
|
[5] |
Poulou M E, Filippakis M E. Global attractor of a dissipative fractional Klein Gordon Schrödinger System. J Dyn Differ Equ, 2022, 34(2): 945-960
doi: 10.1007/s10884-020-09907-7
|
[6] |
Wu L B, Ma Q, Ding X H. Energy-preserving scheme for the nonlinear fractional Klein-Gordon Schrödinger equation. Math Comput Simulat, 2021, 190: 1110-1129
|
[7] |
Veeresha P, Prakasha D G, Singh J, Kumar D, Baleanu D. Fractional Klein-Gordon-Schrödinger equations with Mittag-Leffler memory. Chinese J Phys, 2020, 68: 65-78
|
[8] |
Bégout P, Díaz J I. Finite time extinction for a class of damped Schrödinger equations with a singular saturated nonlinearity. J Differ Equations, 2022, 308: 252-285
|
[9] |
Lehrer R, Soares S H M. Existence and concentration of positive solutions for a system of coupled saturable Schrödinger equations. Nonlinear Anal, 2020, 197: 111841
doi: 10.1016/j.na.2020.111841
|
[10] |
Maia L A, Ruviaro R, Moura E L. Bound state for a strongly coupled nonlinear Schrödinger system with saturation. Milan Journal of Mathematics, 2019, 88: 35-63
|
[11] |
Zhu Q, Zhou Z, Wang L. Exact solutions for a coupled discrete nonlinear Schrödinger system with a saturation nonlinearity. Appl Math Lett, 2017, 74: 7-14
|
[12] |
Carles R. Nonlinear Schrödinger equation and frequency saturation. Analysis PDE, 2012, 5: 1157-1173
|
[13] |
Bochner S. Curvature and Betti numbers in real and complex vector bundles. Uinv Politec Torino Rend Sem Mat, 1955, 15: 225-253
|
[14] |
Shen W X, Yi Y F. Almost Automorphic and Almost Periodic Dynamics in Skew-Product Semiflows. Providence, RI: Memoirs of the American Mathematical Society, 1998
|
[15] |
Shen W X, Wang Y, Zhou D. Almost automorphically and almost periodically forced circle flows of almost periodic parabolic equations on $S^1$. J Dyn Differ Equ, 2019, 32: 1687-1729
|
[16] |
Li Y K, Shen S P. Compact almost automorphic function on time scales and its application. Qual Theor Dyn Syst, 2021, 20: 1-21
|
[17] |
Caraballo T, Cheban D. Almost periodic and almost automorphic solutions of linear differential/difference equations without Favard's separation condition, I. J Differ Equations, 2009, 246(1): 108-128
|
[18] |
Caraballo T, Cheban D. Almost periodic and almost automorphic solutions of linear differential/difference equations without Favard's separation condition, II. J Differ Equations, 2009, 246(3): 1164-1186
|
[19] |
Diagana T. Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces. New York: Springer, 2013
|
[20] |
Zhang T W, Li Y K. Global exponential stability of discrete-time almost automorphic Caputo-Fabrizio BAM fuzzy neural networks via exponential Euler technique. Knowl-Based Syst, 2022, 246: 108675
doi: 10.1016/j.knosys.2022.108675
|
[21] |
PÖSchel J. On the construction of almost periodic solutions for a nonlinear Schrödinger equation. Ergod Theor Dyn Syst, 2002, 22(5): 1537-1549
|
[22] |
Liu S J. The existence of almost-periodic solutions for 1-dimensional nonlinear Schrödinger equation with quasi-periodic forcing. J Math Phys, 2020, 61(2): 031502
doi: 10.1063/1.5134503
|
[23] |
Geng J S. Almost periodic solutions for a class of higher dimensional Schrödinger equations. Front Math China, 2009, 4: 463-482
|
[24] |
Liu S J. Almost-periodic solutions for a quasi-periodically forced nonlinear Schrödinger equation. Indian J Pure Appl Phy, 2021, 53: 10-31
|
[25] |
Signing L. Almost periodic homogenization of the Klein-Gordon type equation. Differ Equat Appl, 2020, 12(2): 143-163
|
[26] |
Abdallah A Y, Al-Khader T M, Abu-Shaab H N. Attractors of the Klein-Gordon-Schrödinger lattice systems with almost periodic nonlinear part. Discrete Cont Dyn-B, 2022, 27(11): 6481-6500
|
[27] |
Di Nezza E, Palatucci G, Valdinoci E. Hitchhiker's guide to the fractional Sobolev spaces. B Sci Math, 2012, 136(5): 521-573
|
[28] |
Servadei R, Valdinoci E. Variational methods for non-local operators of elliptic type. Discrete Cont Dyn, 2013, 33(5): 2105-2137
|
[29] |
Kamenskii M, Obukhovskii V, Petrosyan G, Yao J C. Boundary value problems for semilinear differential inclusions of fractional order in a Banach space. Appl Anal, 2018, 97(4): 571-591
doi: 10.1080/00036811.2016.1277583
|
[30] |
N'Guérékata G M. Almost Periodic and Almost Automorphic Functions in Abstract Spaces. New York: Springer, 2021
|