数学物理学报 ›› 2023, Vol. 43 ›› Issue (4): 1149-1169.

• • 上一篇    下一篇

粘性依赖于密度的一维等熵可压缩 Navier-Stokes 方程组粘性激波的非线性稳定性

廖远康()   

  1. 武汉大学数学与统计学院 武汉 430071
  • 收稿日期:2022-06-18 修回日期:2023-02-26 出版日期:2023-08-26 发布日期:2023-07-03
  • 作者简介:廖远康,E-mail: 1812346449@qq.com

Nonlinear Stability of Viscous Shock Waves for One-dimensional Isentropic Compressible Navier-Stokes Equations with Density-Dependent Viscosity

Liao Yuankang()   

  1. School of Mathematics and Statistics, Wuhan University, Wuhan 430071
  • Received:2022-06-18 Revised:2023-02-26 Online:2023-08-26 Published:2023-07-03

摘要:

该文主要研究粘性系数依赖于密度的一维等熵可压缩 Navier-Stokes 方程组 Cauchy 问题整体解的大时间渐近行为, 主要研究目的是改进文献[7] 的结果至 $\gamma>1, \kappa\geq 0$. 注意到 $\gamma=2, \kappa=1$ 时, 一维等熵可压缩Navier-Stokes方程组对应于Saint-Venant浅水波方程组, 该方程组描述了地表浅水运动的规律, 在物理学和海洋学中有重要的应用[1,4,6]. 注意到文献[7] 中通过利用 Kanel 的方法[19]来推导比容的一致上下界估计, 在得出比容的上界时, 该方法要求 $\kappa<\frac{1}{2}$. 对该文所研究的问题而言, 需要首先利用Kanel'的方法[19]来推导比容的一致上下界估计. 为了扩大 $\kappa$ 的取值范围, 还需要对比容的上下界作更为精细的能量估计. 在得出比容的一致上下界估计之后, 可通过精心设计的连续性技巧, 将 Navier-Stokes 方程组的局部解一步步延拓为整体解, 并得到对应的大时间渐近行为.

关键词: 一维等熵可压缩 Navier-Stokes 方程组, 粘性激波, 大时间渐近行为, 非线性稳定性, 粘性依赖于密度, 大初始扰动

Abstract:

This paper mainly studies the large-time asymptotic behavior of the global solution of the density dependent one-dimensional isentropic compressible Navier-Stokes equations Cauchy problem. The main purpose of this paper is to improve the result of [7] to $\gamma>1, \kappa \geq 0 $. It is noted that when $\gamma=2,\kappa=1 $, the one-dimensional isentropic compressible Navier-Stokes equations correspond to the Saint-Venant shallow water wave equations, which describe the law of surface shallow water movement and have important applications in physics and oceanography [1,4,6]. Note that in [7], the method[19] of Kanel is used to derive the uniform upper and lower bound estimation of specific volume. When obtaining the upper bound of specific volume, this method requires $\kappa<\frac{1}{2}$. For the problem studied in this paper, we need to use Kanel's method[19] to derive the uniform upper and lower bound estimation of specific volume. In order to expand the value range of $\kappa$, it is also necessary to make a more precise energy estimation of the upper and lower bounds of the specific volume. After obtaining the uniform upper and lower bound estimation of specific volume, the local solution of Navier-Stokes equations can be extended into the global solution step by step through carefully designed continuity techniques, and the corresponding large-time asymptotic behavior can be obtained.

Key words: One dimensional isentropic compressible Navier-Stokes equations, Viscous shock waves, Large time asymptotic behavior, Nonlinear stability, Density-dependent viscosity, Large initial perturbation.

中图分类号: 

  • O175