[1] |
Bresch D, Desjardins B. Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model. Commun Math Phys, 2013, 238(1/2): 211-223
doi: 10.1007/s00220-003-0859-8
|
[2] |
Cercignani C, Illner R, Pulvirenti M. The Mathematical Theory of Dilute Gases. New York: Springer-Verlag, 1994
|
[3] |
Chapman S, Cowling T. The Mathematical Theory of Non-uniform Gases (3rd ed). London: Cambrige University Press, 1970
|
[4] |
Chen G Q, Perepelistsa M. Shallow water equations: viscous solutions and inviscid limit. Z Angew Math Phys, 2012, f63: 1067-1084
|
[5] |
Duan R, Liu H X, Zhao H J. Nonlinear stability of rarefaction waves for the compressible Navier-Stokes equations with large initial perturbation. Trans Amer Math Soc, 2009, 361(1): 453-493
doi: 10.1090/S0002-9947-08-04637-0
|
[6] |
Haspot B. Global existence of strong solution for shallow water system with large initial data on the irrotational part. J Differential Equations, 2017, 262(10): 4931-4978
doi: 10.1016/j.jde.2017.01.010
|
[7] |
He L, Tang S J, Wang T. Stability of viscous shock waves for the one-dimesional compressible Navier-Stokes equations with density-dependent viscosity. Acta Math Sci, 2016, 36B(1): 34-48
|
[8] |
Hong H. Global stability of viscous contact wave for 1-D compressible Navier-Stokes equations. J Differential Equations, 2012, 252(5): 3482-3505
doi: 10.1016/j.jde.2011.11.015
|
[9] |
Huang B K, Wang L S, Xiao Q H. Global nonlinear stability of rarefaction waves for compressible Navier-Stokes equations with temperature and density dependent transport coefficients. Kinet Relat Models, 2016, 3: 469-514
|
[10] |
Huang B K, Liao Y K. Global stability of combination of viscous contact wave with rarefaction wave for compressible Navier-Stokes equations with temperature-dependent viscosity. Math Models Methods Appl Sci, 2017, 27(12): 2321-2379
doi: 10.1142/S0218202517500464
|
[11] |
Huang F M, Li J, Matsumura A. Asymptotic stability of combination of viscous contact wave with rarefaction waves for one-dimensional compressible Navier-Stokes system. Arch Ration Mech Anal, 2010, 197(1): 89-116
doi: 10.1007/s00205-009-0267-0
|
[12] |
Huang F M, Matsumura A. Stability of a composite wave of two viscous shock waves for the full compressible Navier-Stokes equation. Comm Math Phys, 2009, 289(3): 841-861
doi: 10.1007/s00220-009-0843-z
|
[13] |
Huang F M, Matsumura A, Xin Z P. Stability of contact discontinuities for the 1-D compressible Navier-Stokes equations. Arch Rational Mech Anal, 2006, 179: 55-77
doi: 10.1007/s00205-005-0380-7
|
[14] |
Huang F M, Wang T. Stability of superposition of viscous contact wave and rarefaction waves for compressible Navier-Stokes system. Indiana Univ Math J, 2016, 65: 1833-1875
doi: 10.1512/iumj.2016.65.5914
|
[15] |
Huang F M, Xin Z P, Yang T. Contact discontinuity with general perturbations for gas motions. Adv Math, 2008, 2019: 1246-1297
|
[16] |
Huang F M, Zhao H J. On the global stability of contact discontinuity for compressible Navier-Stokes equations. Rend Sem Mat Univ Padova, 2003, 109: 283-305
|
[17] |
Jiu Q S, Wang Y, Xin Z P. Vacuum behaviors around rarefaction waves to 1D compressible Navier-Stokes equations with density-dependent viscosity. SIAM J Math Anal, 2013, 45(5): 3194-3228
doi: 10.1137/120879919
|
[18] |
Jiu Q S, Wang Y, Xin Z P. Stability of rarefaction waves to the 1D compressible Navier-Stokes equations with density-dependent viscosity. Comm Partial Differential Equations, 2011, 36(4): 602-634
doi: 10.1080/03605302.2010.516785
|
[19] |
Kanel' J. A model system of equations for the one-dimensional motion of a gas. Differential Equations, 1968, 4: 374-380
|
[20] |
Kawashima S, Matsumura A. Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion. Comm Math Phys, 1985, 101(1): 97-127
doi: 10.1007/BF01212358
|
[21] |
Kawashima S, Matsumura A, Nishida T. On the fliud-dynamical approximation tothe Boltzmann equation at the level of the Navier-Stokes equation. Comm Math Phys, 1979, 70: 97-124
doi: 10.1007/BF01982349
|
[22] |
Kawashima S, Nakamura T, Nishibata S, Zhu P C. Stationary waves to viscous heat-conductive gases in half-space: existence, stability and convergence rate. Math Models Methods Appl Sci, 2010, 20(12): 2201-2235
doi: 10.1142/S0218202510004908
|
[23] |
Liu S Q, Yang T, Zhao H J. Compressible Navier-Stokes approximation to theBoltzmann equation. J Differential Equations, 2014, 256(11): 3770-3816
doi: 10.1016/j.jde.2014.02.020
|
[24] |
Liu T P, Xin Z P, Yang T. Vacuum states for compressible flow. Discrete Contin Dyn Syst, 1998, 4(1): 1-32
doi: 10.3934/dcds.1998.4.1
|
[25] |
Liu T P. Shock waves for compressible Navier-Stokes equations are stable. Commun Pure Appl Math, 1986, 39: 565-594
doi: 10.1002/(ISSN)1097-0312
|
[26] |
Liu T P, Xin Z P. Nonlinear stability of rarefaction waves for compressible Navier-Stokes equations. Comm Math Phys, 1988, 118: 451-465
doi: 10.1007/BF01466726
|
[27] |
Liu T P, Xin Z P. Pointwise decay to contact discontinuities for systems of viscous conservation laws. Asian J Math, 1997, 1: 34-84
doi: 10.4310/AJM.1997.v1.n1.a3
|
[28] |
Liu T P, Zeng Y N. Shock waves in conservation laws with physical viscosity. American Mathematical Soc, 2015
|
[29] |
Mascia C, Zumbrun K. Stability of small-amplitude shock profiles of symmetric hyperbolic-parabolic systems. Comm Pure Appl Math, 2004, 57(7): 841-876
doi: 10.1002/(ISSN)1097-0312
|
[30] |
Matsumura A, Nishihara K. Global asymptotics toward the rarefaction wave for solutions of viscous $p$-system with boundary effect. Quart Appl Math, 2000, 58(1): 69-83
doi: 10.1090/qam/2000-58-01
|
[31] |
Matsumura A, Nishihara K. Global stability of the rarefaction wave of a one-dimensional model system for compressible viscous gas. Comm Math Phys, 1992, 144(2): 325-335
doi: 10.1007/BF02101095
|
[32] |
Matsumura A, Nishihara K. Asymptotic toward the rarefaction waves of the solutions of a one-dimensional model system for compressible viscous gas. Japan J Appl Math, 1986, 3: 1-13
doi: 10.1007/BF03167088
|
[33] |
Matsumura A, Nishihara K. On the stability of travelling wave solutions of a one-dimensional model system for compressible viscous gas. Japan J Appl Math, 1985, 2(1): 17-25
doi: 10.1007/BF03167036
|
[34] |
Matsumura A, Wang Y. Asymptotic stability of viscous shock wave for a one-dimensional isentropic model of viscous gas with density dependent viscosity. Methods Appl Anal, 2010, 17(4): 279-290
doi: 10.4310/MAA.2010.v17.n3.a3
|
[35] |
Nishida T, Smoller J. Solutions in the large for some nonlinear hyperbolic conservation laws. Comm Pure Appl Math, 1973, 26: 183-200
doi: 10.1002/(ISSN)1097-0312
|
[36] |
Nishihara K, Yang T, Zhao H J. Nonlinear stability of strong rarefaction waves for compressible Navier-Stokes equations. SIAM J Math Anal, 2004, 35(6): 1561-1593
doi: 10.1137/S003614100342735X
|
[37] |
Qin X H, Wang Y. Stability of wave patterns to the inflow problem of full compressible Navier-Stokes equations. SIAM J Math Anal, 2009, 41(5): 2057-2087
doi: 10.1137/09075425X
|
[38] |
Smoller J. Shock Waves and Reaction-Diffusion Equations. Grundlehren der Mathematischen Wissenschaften 285. New York:Springer-Verlag, 1994
|
[39] |
Wan L, Wang T, Zou Q Y. Stability of stationary solutions to the outflow problem for full compressible Navier-Stokes equations with large initial perturbation. Nonlinearity, 2016, 29(4): 1329-1354
doi: 10.1088/0951-7715/29/4/1329
|
[40] |
Wan L, Wang T, Zhao H J. Asymptotic stability of wave patterns to compressible viscous and heat-conducting gases in the half space. J Differential Equations, 2016, 261(11): 5949-5991
doi: 10.1016/j.jde.2016.08.032
|
[41] |
Wang T, Zhao H J, Zou Q Y. One-dimensional compressible Navier-Stokes equations with large density oscillation. Kinet Relat Models, 2013, 6(3): 649-670
doi: 10.3934/krm.2013.6.649
|