[1] |
Arrieta M, Carvalho A N. Abstract parabolic problems with critical nonlinearities and applications to Navier-Stokes and heat equations. Trans Amer Math Soc, 2000, 352: 285-310
doi: 10.1090/tran/2000-352-01
|
[2] |
Bae H O, Jin B J. Asymptotic behavior for the Navier-Stokes equations in 2D exterior domains. J Func Anal, 2006, 240: 508-529
doi: 10.1016/j.jfa.2006.04.029
|
[3] |
Bae H O, Jin B J. Temporal and spatial decay rates of Navier-Stokes equations in exterior domains. Bull Korean Math Soc, 2007, 44(3): 547-567
doi: 10.4134/BKMS.2007.44.3.547
|
[4] |
Bae H O, Roh J. Weighted estimates for the incompressible fluid in exterior domains. J Math Anal Appl, 2009, 355: 846-854
doi: 10.1016/j.jmaa.2009.02.016
|
[5] |
Bae H O, Roh J. Optimal weighted estimates of the flows in exterior domains. Nonlinear Analysis, 2010, 73: 1350-1363
doi: 10.1016/j.na.2010.04.067
|
[6] |
Borchers W, Miyakawa T. Algebraic $L^{2}$ decay for Navier-Stokes flows in exterier domians. Acta Math, 1990, 165: 189-227
doi: 10.1007/BF02391905
|
[7] |
Giga Y, Miyakawa T. Solution in $L_{r}$ of the Navier-Stokes initial value problem. Arch Rat Mech Anal, 1985, 89: 267-281
doi: 10.1007/BF00276875
|
[8] |
Han P. Decay rates for the incompressible Navier-Stokes flows in 3D exterior domains. J Func Anal, 2012, 263: 3235-3269
doi: 10.1016/j.jfa.2012.08.007
|
[9] |
Han P. Decay rates of higher-order norms for the Navier-Stokes flows in 3D exterior domains. Commun Math Phys, 2015, 334: 397-432
doi: 10.1007/s00220-014-2151-5
|
[10] |
Han P. Weighted decay results for the nonstationary Stokes flow and Navier-Stokes equations in half spaces. J Math Fluid Mech, 2015, 2016: 599-626
|
[11] |
He C, Miyakawa T. On $L^{1}$-summability and asymptotic profiles for smooth solutions to Navier-Stokes equations in a 3D exterior domain. Math Z, 2003, 245: 387-417
doi: 10.1007/s00209-003-0551-x
|
[12] |
He C, Miyakawa T. On weighted-norm estimates for nonstationary incompressible Navier-Stokes flows in a 3D exterior domain. J Diffenetial Equations, 2009, 246: 2355-2386
|
[13] |
He C, Wang L. Weighted $L^{p}$-estimates for Stokes flow in $\mathbb{R} _{+}^{n}$ with applications to the non-stationary Navier-Stokes flow. Science China Mathematics, 2011, 53(3): 573-586
doi: 10.1007/s11425-010-0046-2
|
[14] |
He C, Xin Z. Weighted estimates for nonstationary Navier-Stokes equations in exterior domain. Methods Appl Anal, 2000, 7(3): 443-458
doi: 10.4310/MAA.2000.v7.n3.a1
|
[15] |
Iwashita H. $L_{q}-L_{r}$ estimates for solutions of the nonstationary Stokes equations in an exterior domain and the Navier-Stokes initial value Problems in $L_{q}$ spaces. Math Ann, 1989, 285: 265-288
doi: 10.1007/BF01443518
|
[16] |
Kato T. Strong $L^{p}$-solutions of the Navier-Stokes equation in $\mathbb{R} ^{m}$, with applications to weak solutions. Math Z, 1984, 187: 471-480
doi: 10.1007/BF01174182
|
[17] |
Kozono H. Global $L^{n}$-solution and its decay property for the Navier-Stokes equations in half-space $\mathbb{R} _{+}^{n}$. J Differential Equations, 1989, 79: 79-88
doi: 10.1016/0022-0396(89)90114-9
|
[18] |
Miyakawa T. On nonstationary solutions of the Navier-Stokes equations in an exterior domain. Hiroshima Math J, 1982, 12: 115-140
|
[19] |
Miyakawa T, Sohr H. On energy inequality, smoothness and large time behavior in $L^{2}$ for weak solutions of the Navier-Stokes equations in exterior domains. Math Z, 1988, 199: 455-478
doi: 10.1007/BF01161636
|
[20] |
张庆华, 朱月萍. 半空间上Stokes半群的加权时空估计及其在非稳恒Navier-Stokes方程中的应用. 数学物理学报, 2021, 41A(6): 1657-1670
|
|
Zhang Q, Zhu Y. Weighted temporal-spatial estimates of the Stokes semigroup with applications to the non-stationary Navier-Stokes Equation in half-space. Acta Math Sci, 2021, 41A(6): 1657-1670
|
[21] |
Zhang Q, Zhu Y. Rapid time-decay phenomenon of the incompressible Navier-Stokes flow in exterior domains. Acta Mathematica Sinica, English series, 2022, 38(4): 745-760
doi: 10.1007/s10114-022-1116-4
|