数学物理学报 ›› 2023, Vol. 43 ›› Issue (2): 505-514.

• • 上一篇    下一篇

半无穷柱体上Forchheimer方程组解的Phragmén-Lindelöf型二择一结果

陈雪姣(),李远飞*(),侯春娟   

  1. 广州华商学院应用数学系 广州 511300
  • 收稿日期:2021-09-10 修回日期:2022-09-20 出版日期:2023-04-26 发布日期:2023-04-17
  • 通讯作者: 李远飞, E-mail:liqfd@163.com
  • 作者简介:陈雪姣, E-mail:1032170427@qq.com
  • 基金资助:
    广东省普通高校重点项目(自然科学)(2019KZDXM042);广州华商学院科研团队项目(2021HSKT01)

Phragmén-Lindelöf Type Results for the Solutions of Forchheimer Equations on a Semi-Infinite Cylinder

Chen Xuejiao(),Li Yuanfei(),Hou Chunjuan   

  1. Department of Apllied Mathematics, Guangzhou Huashang College, Guangdong 511300
  • Received:2021-09-10 Revised:2022-09-20 Online:2023-04-26 Published:2023-04-17
  • Supported by:
    Key Projects of Universities in Guangdong Province(2019KZDXM042);Research Team Project of Guangzhou Huashang College(2021HSKT01)

摘要:

考虑了定义在三维半无限柱体上多孔介质中的Forchheimer流体. 建立了一个能量函数, 推导了一个关于该能量函数的微分不等式, 由此不等式得到了解的二择一结果. 在衰减的情况下, 通过设置一个大于零的参数, 得到了解的快速衰减率.

关键词: Forchheimer方程组, 微分不等式, 二择一

Abstract:

The Forchheimer fluid defined in porous media on a three-dimensional semi-infinite cylinder is considered. An energy function is established, and a differential inequality about the energy function is derived. From the inequality, an alternative result of the solutions is obtained. In the case of decay, the fast decay rate of the solutions is obtained by setting a positive parameter.

Key words: Forchheimer matrixs, Differential inequality technique, Alternative

中图分类号: 

  • O175.29