[1] |
Nield D A, Bejan A. Convection in Porous Media. New York: Springer-Verlag Press, 1992
|
[2] |
Straughan B. Mathematical Aspects of Penetrative Convection. Florida: CRC Press, 1993
|
[3] |
Payne L E, Song J C. Spatial decay bounds for the Forchheimer matrixs. International Journal of Engineering Science, 2002, 40: 943-956
doi: 10.1016/S0020-7225(01)00102-1
|
[4] |
Li Y F, Liu Y, Luo S G, Lin C. Decay estimates for the Brinkman-Forchheimer matrixs in a semi-infinite pipe. ZAMM Z Angew Math Mech, 2012, 92(2): 160-176
doi: 10.1002/zamm.201000202
|
[5] |
Horgan C O, Wheeler L T. Spatial decay estimates for the Navier-Stokes matrixs with application to the problem of entry flow. SIAM J Appl Math, 1978, 35: 97-116
doi: 10.1137/0135008
|
[6] |
Ames K A, Payne L E, Schaefer P W. Spatial decay estimates in time-dependent Stokes flow. SIAM J Math Anal, 1993, 24: 1395-1413
doi: 10.1137/0524081
|
[7] |
Li Y F, Liu Y, Lin C. Decay estimates for homogeneous Boussinesq matrixs in a semi-infinite pipe. Nonlinear Analysis Theory Methods and Applications. 2011, 74(13): 4399-4417
|
[8] |
Knops R J, Quintanilla R. Spatial decay in transient heat conduction for general elongated regions. Q Appl Math, 2017, 76(4): 611-625
doi: 10.1090/qam/2018-76-04
|
[9] |
石金诚, 李远飞. 多孔介质中相互作用的Brinkman-Forchheimer流与Darcy流的空间衰减估计. 河南师范大学学报(自然科学版), 2021, 49(5): 19-26
|
|
Shi J C, Li Y F. Spatial decay estimates for Brinkman-Forchheimer fluid interfacing with a Darcy fluid in porous medium. Journal of Henan Normal University (Natural Science Edition), 2021, 49(5): 19-26
|
[10] |
Liu Y, Li Y F, Lin C H, Yao Z H. Spatial decay bounds for the channel flow of the Boussinesq matrixs. J Math Anal Appl, 2011, 381(1): 87-109
doi: 10.1016/j.jmaa.2011.02.066
|
[11] |
Leseduarte M C, Quintanilla R. Phragmén-Lindelöf of alternative for the Laplace matrix with dynamic boundary conditions. Journal of Applied Analysis and Computation, 2017, 7(4): 1323-1335
|
[12] |
Liu Y, Lin C H. Phragmén-Lindelöf type alternative results for the stokes flow matrix. Mathematical Inequalities & Applications, 2006, 9(4): 671-694
|
[13] |
李远飞, 李丹丹, 陈雪姣, 石金诚. 一类拟线性瞬态抛物方程组的空间二择性. 山东大学学报(理学版), 2021, 56(6): 1-9
|
|
Li Y F, Li D D, Chen X J, Shi J C. Alternative results of a class of quasilinear transient parabolic matrixs. Journal of Shandong University (Natural Science), 2021, 56(6): 1-9
|
[14] |
李远飞, 肖胜中, 陈雪姣. Ⅲ型热弹性方程的空间二择性及稳定性. 应用数学和力学, 2021, 42(4): 431-440
|
|
LI Y F, Xiao Sh Z, Chen X J. Spatial alternative and stability of type III Thermoelastic matrixs. Applied Mathematics and Mechanics, 2021, 42(4): 431-440
|
[15] |
李远飞, 郭连红, 曾鹏. 波动方程在半无穷柱体和外部区域上的空间爆破和衰减性. 吉林大学学报(理学版), 2021, 59(2): 196-206
|
|
Li Y F, Guo L H, Zeng P. Spatial blow up and decay of wave matrixin a semi-infinite cylinder and on an exterior region. Journal of Jilin University (Science Edition), 2021, 59(2): 196-206
|
[16] |
Horgan C O, Payne L E. Phragmén-Lindelöf type results for Harmonic functions with nonlinear boundary conditions. Arch Rational Mech Anal, 1993, 122(2): 123-144
doi: 10.1007/BF00378164
|
[17] |
李远飞. 具有非线性阻尼和源项的波动方程系统的空间渐近性质. 数学季刊, 2021, 36(1): 67-78
|
|
Li Y F. Spatial asymptotic properties of a system wave matrixs with nonlinear damping and source terms. Chinese Quarterly Journal of Mathematics, 2021, 36(1): 67-78
|
[18] |
李远飞, 李志青. 具有非线性边界条件的瞬态热传导方程的二择一结果. 数学物理学报, 2020, 40A(5): 1248-1258
|
|
Li Y F, Li Z Q. Phragmén-Lindelöf type results for transient heat conduction matrix with nonlinear boundary conditions. Acta Mathematica Scientia, 2020, 40A(5): 1248-1258
|
[19] |
Lin C H, Payne L E. Phragmén-Lindelöf alternative for a class of quasilinear second order parabolic problems. Diff Integ Equa, 1995, 8: 539-551
|
[20] |
Lin C H, Payne L E. A Phragmén-Lindelöf type results for second order quasilinear parabolic matrix in $R^2$. Z Angew Math Phys, 1994, 45: 294-311
doi: 10.1007/BF00943507
|
[21] |
BandleE C. Isoperimetric Inequalities and Their Applications. London: Pitman Press, 1980
|