1 |
Fang K T, Wang Y. Number-Theoretic Methods in Statistics. London: Chapman and Hall, 1994
|
2 |
Hickernell F J . A generalized discrepancy and quadrature erron bound. Mathematics of Computation, 1998, 67 (221): 299- 322
doi: 10.1090/S0025-5718-98-00894-1
|
3 |
Hickernell F J. Lattice Rules: How well do they measure up?//Hellekalek P, Larche G. Random and Quasi-Random Point Sets. New York: Springer, 1998: 109-166
|
4 |
Hickernell F J , Liu M Q . Uniform designs limit aliasing. Biometrika, 2002, 89, 893- 904
doi: 10.1093/biomet/89.4.893
|
5 |
Zhou Y D , Ning J H , Song X B . Lee discrepancy and its applications in experimental designs. Statistics & Probability Letters, 2008, 78, 1933- 1942
|
6 |
Chatterjee K , Qin H . Generalized discrete discrepancy and its application in experimental designs. Journal of Statistical Planning and Inference, 2011, 141, 951- 960
doi: 10.1016/j.jspi.2010.08.014
|
7 |
Fang K T , Mukerjee R . A connection between uniformity and aberration in regular fractions of two-level factorials. Biometrika, 2000, 87, 193- 198
doi: 10.1093/biomet/87.1.193
|
8 |
Fang K T, Ma C X, Mukerjee R. Uniformity in fractional factorials//Fang K T, Hickernell F J, Niederreiter H. Monte Carlo and Quasi-Monte Carlo Methods 2000. Berlin: Springer-Verlag, 2002: 232-241
|
9 |
Fang K T , Lu X , Winker P . Lower bounds for centered and wrap-around L2-discrepancy and construction of uniform designs by threshold accepting. Journal of Complexity, 2003, 19, 692- 711
doi: 10.1016/S0885-064X(03)00067-0
|
10 |
Chatterjee K , Fang K T , Qin H . Uniformity in factorial designs with mixed levels. Journal of Statistical Planning and Inference, 2005, 128, 593- 607
doi: 10.1016/j.jspi.2003.12.012
|
11 |
Chatterjee K , Fang K T , Qin H . A lower bound for centered L2-discrepancy on asymmetric factorials and its application. Metrika, 2006, 63, 243- 255
doi: 10.1007/s00184-005-0015-x
|
12 |
Wang Z H , Qin H , Chatterjee K . Lower bounds for the symmetric L2-discrepancy and their application. Communications in Statistics-Theory and Methods, 2007, 36, 2413- 2423
doi: 10.1080/03610920701232667
|
13 |
Qin H , Li D . Connection between uniformity and orthogonality for symmetrical factorial designs. Journal of Statistical Planning and Inference, 2006, 136, 2770- 2782
doi: 10.1016/j.jspi.2004.11.005
|
14 |
Qin H , Fang K T . Discrete discrepancy in factorial designs. Metrika, 2004, 60, 59- 72
|
15 |
Fang K T , Maringer D , Tang Y , Winker P . Lower bounds and stochastic optimization algorithms for uniform designs with three or four levels. Mathematics of Computation, 2006, 75, 859- 878
|
16 |
Chatterjee K , Ou Z J , Phoa F K H , Qin H . Uniform four-level designs from two-level designs: a new look. Statistica Sinica, 2017, 27, 171- 186
|
17 |
覃红, 欧祖军, ChatterjeeKashinath. 四水平计算机试验设计的构造. 中国科学: 数学, 2017, 47 (9): 1089- 1100
|
|
Qin H , Ou Z J , Chatterjee K . Construction of four-level designs for computer experiments. Scientia Sinica Mathematica, 2017, 47 (9): 1089- 1100
|
18 |
Hu L P , Li H Y , Ou Z J . Constructing optimal four-level designs via gray map code. Metrika, 2019, 82 (5): 573- 587
doi: 10.1007/s00184-018-0685-9
|
19 |
Qin H , Zhang S L , Fang K T . Constructing uniform design with two or three-level. Acta Mathematica Scientia, 2006, 26, 451- 459
doi: 10.1016/S0252-9602(06)60069-6
|
20 |
Zhou Y D , Ning J H . Lower bounds of wrap-around L2-discrepancy and relationships between MLHD and uniform design with a large size. Journal of Statistical Planning and Inference, 2008, 138, 2330- 2339
doi: 10.1016/j.jspi.2007.10.001
|
21 |
Zhang Q H , Wang Z H , Hu J W , Qin H . A new lower bound for wrap-around L2-discrepancy on two and three mixed level factorials. Statistics & Probability Letters, 2015, 96, 133- 140
|
22 |
雷轶菊, 欧祖军. 三水平U-型设计在对称化L2-偏差下的下界. 应用数学学报, 2018, 41 (1): 138- 144
|
|
Lei Y J , Ou Z J . Lower bound of symmetric L2-discrepancy on three-level U-type designs. Acta Mathematicae Applicatae Sinca,2018, 41 (1): 138- 144
|
23 |
Zhou Y D , Fang K T , Ning J H . Mixture discrepancy for quasi-random points sets. Journal of Complexity, 2013, 29, 283- 301
doi: 10.1016/j.jco.2012.11.006
|