数学物理学报 ›› 2022, Vol. 42 ›› Issue (6): 1790-1801.
收稿日期:
2021-12-03
出版日期:
2022-12-26
发布日期:
2022-12-16
作者简介:
韩明, E-mail: 基金资助:
Received:
2021-12-03
Online:
2022-12-26
Published:
2022-12-16
Supported by:
摘要:
为了度量估计误差, 该文在E-Bayes估计(expected Bayesian estimation)的基础上引入了E-MSE(expected mean square error)的定义, 并推导不同损失函数(包括平方损失函数和LINEX损失函数)下失效概率的E-Bayes估计及其E-MSE的表达式.通过MonteCarlo模拟比较了所提出估计方法的性能(比较基于E-MSE).最后, 分别采用E-Bayes方法和MCMC方法, 结合发动机可靠性问题进行了计算和分析.在考虑评价不同损失函数下参数的E-Bayes估计时, 该文提出用E-MSE作为评价标准.
中图分类号:
韩明. 失效概率的E-Bayes估计和E-MSE及其应用[J]. 数学物理学报, 2022, 42(6): 1790-1801.
Ming Han. E-Bayesian Estimation and E-MSE of Failure Probability and Its Applications[J]. Acta mathematica scientia,Series A, 2022, 42(6): 1790-1801.
表 1
$ \widehat p_{iEBj} (j=1, 2) $的计算结果"
10 | 0 | 0.0364 | 0.0350 | 0.0014 |
1 | 0.1171 | 0.1123 | 0.0048 | |
5 | 0.4586 | 0.4533 | 0.0053 | |
10 | 0.8806 | 0.8732 | 0.0074 | |
20 | 0 | 0.0193 | 0.0189 | 4.0000e-004 |
5 | 0.2500 | 0.2416 | 0.0084 | |
10 | 0.4761 | 0.4670 | 0.0091 | |
20 | 0.9298 | 0.9213 | 0.0085 | |
50 | 0 | 0.0111 | 0.0110 | 1.0000e-004 |
10 | 0.2026 | 0.1991 | 0.0035 | |
30 | 0.5865 | 0.5804 | 0.0061 | |
50 | 0.9711 | 0.9706 | 5.0000e-004 | |
100 | 0 | 0.0047 | 0.0046 | 1.0000e-004 |
20 | 0.2015 | 0.1989 | 0.0026 | |
50 | 0.4952 | 0.4901 | 0.0051 | |
100 | 0.9849 | 0.9830 | 0.0019 |
表 2
E-MSE$\left(\widehat{p}_{i E B j}\right)(j=1, 2) $的计算结果"
si | ri | E-MSE | E-MSE | E-MSE |
10 | 0 | 0.0025 | 0.0027 | 2.0000e-004 |
1 | 0.0079 | 0.0081 | 2.0000e-004 | |
5 | 0.0190 | 0.0194 | 4.0000e-004 | |
10 | 0.0081 | 0.0086 | 5.0000e-004 | |
20 | 0 | 8.1042e-004 | 8.1169e-004 | 1.2700e-006 |
5 | 0.0081 | 0.0084 | 3.0000e-004 | |
10 | 0.0030 | 0.0034 | 4.0000e-004 | |
20 | 0.0028 | 0.0033 | 5.0000e-004 | |
50 | 0 | 2.0616e-004 | 2.1619e-004 | 1.0030e-005 |
10 | 0.2026 | 0.2033 | 7.0000e-004 | |
30 | 0.0046 | 0.0051 | 5.0000e-004 | |
50 | 5.2910e-004 | 5.3048e-004 | 1.3800e-006 | |
100 | 0 | 4.4859e-005 | 4.5969e-005 | 1.1100e-006 |
20 | 0.0016 | 0.0018 | 2.0000e-004 | |
50 | 0.0024 | 0.0028 | 4.0000e-004 | |
100 | 1.4368e-004 | 1.4859e-004 | 4.9100e-006 |
表 4
$ \widehat p_{iEBj}(c=1.1) $的计算结果"
1 | 450 | 0.0070 | 0.0069 | 1.0000e-004 |
2 | 650 | 0.0081 | 0.0080 | 1.0000e-004 |
3 | 850 | 0.0097 | 0.0096 | 1.0000e-004 |
4 | 1050 | 0.0120 | 0.0118 | 2.0000e-004 |
5 | 1250 | 0.0475 | 0.0471 | 4.0000e-004 |
6 | 1450 | 0.0694 | 0.0688 | 6.0000e-004 |
7 | 1650 | 0.2160 | 0.2151 | 9.0000e-004 |
表 5
E-MSE$ \left(\widehat{p}_{i E B j}\right)(c=1.1)$的计算结果"
i | ti | E-MSE | E-MSE | E-MSE |
1 | 450 | 9.4992e-005 | 1.5319e-004 | 5.8198e-005 |
2 | 650 | 1.2779e-004 | 2.0635e-004 | 7.8560e-005 |
3 | 850 | 1.8106e-004 | 2.9287e-004 | 1.1181e-004 |
4 | 1050 | 2.7615e-004 | 3.8963e-004 | 1.1348e-004 |
5 | 1250 | 0.0014 | 0.0033 | 0.0019 |
6 | 1450 | 0.0029 | 0.0063 | 0.0034 |
7 | 1650 | 0.0047 | 0.0158 | 0.0111 |
表 6
$ \widehat{p}_{i E B j}(c=2)$的计算结果"
i | ti | |||
1 | 450 | 0.0069 | 0.0068 | 1.0000e-004 |
2 | 650 | 0.0080 | 0.0079 | 1.0000e-004 |
3 | 850 | 0.0096 | 0.0095 | 1.0000e-004 |
4 | 1050 | 0.0119 | 0.0117 | 2.0000e-004 |
5 | 1250 | 0.0468 | 0.0464 | 4.0000e-004 |
6 | 1450 | 0.0680 | 0.0672 | 8.0000e-004 |
7 | 1650 | 0.2080 | 0.2071 | 9.0000e-004 |
表 7
E-MSE$\left(\widehat{p}_{i E B j}\right)(c=2) $的计算结果"
i | ti | E-MSE | E-MSE | E-MSE |
1 | 450 | 9.3829e-005 | 9.3932e-005 | 1.0300e-007 |
2 | 650 | 1.2598e-004 | 1.2610e-004 | 1.2000e-007 |
3 | 850 | 1.7801e-004 | 1.7907e-004 | 1.0600e-006 |
4 | 1050 | 2.7044e-004 | 2.7349e-004 | 3.0500e-006 |
5 | 1250 | 0.0013 | 0.0019 | 6.0000e-004 |
6 | 1450 | 0.0027 | 0.0035 | 8.0000e-004 |
7 | 1650 | 0.0044 | 0.0107 | 0.0063 |
表 8
$\widehat{p}_{i E B j}(c=3) $的计算结果"
i | ti | |||
1 | 450 | 0.0069 | 0.0068 | 1.0000e-004 |
2 | 650 | 0.0080 | 0.0079 | 1.0000e-004 |
3 | 850 | 0.0095 | 0.0094 | 1.0000e-004 |
4 | 1050 | 0.0117 | 0.0116 | 1.0000e-004 |
5 | 1250 | 0.0461 | 0.0457 | 4.0000e-004 |
6 | 1450 | 0.0666 | 0.0658 | 8.0000e-004 |
7 | 1650 | 0.2000 | 0.1991 | 9.0000e-004 |
表 9
E-MSE$ \left(\widehat{p}_{i E B j}\right)(c=3)$的计算结果"
i | ti | E-MSE | E-MSE | E-MSE |
1 | 450 | 9.2570e-005 | 9.3109e-005 | 5.3900e-007 |
2 | 650 | 1.2403e-004 | 1.2513e-004 | 1.1000e-006 |
3 | 850 | 1.7474e-004 | 1.7589e-004 | 1.1500e-006 |
4 | 1050 | 2.6436e-004 | 2.6789e-004 | 3.5300e-006 |
5 | 1250 | 0.0013 | 0.0017 | 4.0000e-004 |
6 | 1450 | 0.0026 | 0.0032 | 6.0000e-004 |
7 | 1650 | 0.0042 | 0.0095 | 0.0053 |
表 12
一些计算结果($ c=2 $)"
mean | sd | MC-error | val2.5pc | val97.5pc | start | sample | ||
1 | 450 | 0.0069 | 0.0075 | 9.710e-5 | 1.1374e-5 | 0.0245 | 1001 | 9000 |
2 | 650 | 0.0079 | 0.0085 | 1.208e-4 | 4.9915e-5 | 0.0287 | 1001 | 9000 |
3 | 850 | 0.0096 | 0.0104 | 1.563e-4 | 7.0336e-5 | 0.0366 | 1001 | 9000 |
4 | 1050 | 0.0118 | 0.0136 | 1.856e-4 | 9.0227e-5 | 0.0469 | 1001 | 9000 |
5 | 1250 | 0.0456 | 0.0370 | 3.923e-4 | 0.00252 | 0.1386 | 1001 | 9000 |
6 | 1450 | 0.0675 | 0.0535 | 5.319e-4 | 0.00409 | 0.2015 | 1001 | 9000 |
7 | 1650 | 0.2021 | 0.1145 | 0.001368 | 0.04232 | 0.4748 | 1001 | 9000 |
表 14
$ \widehat{R}_{EBj}(t)(c=2) $和$ \widehat{R}_{HB}(t) $的计算结果"
100 | 300 | 500 | 800 | 1000 | 1200 | 1500 | 1700 | |
0.9999 | 0.9995 | 0.9973 | 0.9870 | 0.9730 | 0.9511 | 0.9003 | 0.8529 | |
0.9999 | 0.9995 | 0.9972 | 0.9872 | 0.9735 | 0.9524 | 0.9037 | 0.8584 | |
0.9999 | 0.9991 | 0.9959 | 0.9827 | 0.9661 | 0.9414 | 0.8970 | 0.8486 |
1 | Varian H R. A Bayesian approach to real estate assessment//Feinberge S E, Zellner A. Studies in Bayesian Econometrics and statistics in Honor of Leonard J Savage. Amsterdam: North-Holland, 1975: 195-208 |
2 |
Zellner A . Bayesian estimation and prediction using asymmetric loss functions. Journal of the American Statistical Associationm, 1986, 81 (394): 446- 451
doi: 10.1080/01621459.1986.10478289 |
3 |
Parsian A , Nematollahi N . Estimation of scale parameter under entropy loss function. Journal of Statistical Planning Inference, 1996, 52 (1): 77- 91
doi: 10.1016/0378-3758(95)00026-7 |
4 |
Yousefzadeh F . E-Bayesian and hierarchical Bayesian estimations for the system reliability parameter based on asymmetric loss function. Communications in Statistics-Theory and Methods, 2017, 46 (1): 1- 8
doi: 10.1080/03610926.2014.968736 |
5 | Kazmi S M A , Aslam M , Ali S . Preference of prior for the class of life-time distribution under different loss functions. Pakistan Journal of Statistics, 2012, 28 (4): 467- 484 |
6 |
Ali S , Aslam M , Kazmi S M A . A study of the effect of the loss function on Bayes estimate, posterior risk and hazard function for Lindley distribution. Applied Mathematical Modelling, 2013, 37 (8): 6068- 6078
doi: 10.1016/j.apm.2012.12.008 |
7 |
Ali S . On the Bayesian estimation of the weighted Lindley distribution. Journal of Statistical Computation and Simulation, 2015, 85 (5): 855- 880
doi: 10.1080/00949655.2013.847442 |
8 |
Han Ming . The E-Bayesian and hierarchical Bayesian estimations of Pareto distribution parameter under different loss functions. Journal of Statistical Computation and Simulation, 2017, 87 (3): 577- 593
doi: 10.1080/00949655.2016.1221408 |
9 | Lindley D V , Smith A F M . Bayes estimates for the linear model. Journal of the Royal Statistical Society, 1972, 34, 1- 41 |
10 | Ando T , Zellner A . Hierarchical Bayesian analysis of the seemingly unrelated regression and simultaneous equations models using a combination of direct monte carlo and importance sampling techniques. Bayesian Analysis, 2010, 5 (1): 65- 96 |
11 |
Osei F B , Duker A A . Hierarchical Bayesian modeling of the space-time diffusion patterns of cholera epidemic in Kumasi. Ghana Statistica Neerlandica, 2011, 65, 84- 100
doi: 10.1111/j.1467-9574.2010.00475.x |
12 |
Han Ming . E-Bayesian estimation and hierarchical Bayesian estimation of failure rate. Applied Mathematical Modelling, 2009, 33 (4): 1915- 1922
doi: 10.1016/j.apm.2008.03.019 |
13 |
Han Ming . E-Bayesian estimation and hierarchical Bayesian estimation of failure probability. Communications in Statistics-Theory and Methods, 2011, 40 (18): 3303- 3314
doi: 10.1080/03610926.2010.498643 |
14 |
Kizilaslan F . The E-Bayesian and hierarchical Bayesian estimations for the proportional reversed hazard rate model based on record values. Journal of Statistical Computation and Simulation, 2017, 87, 2253- 2273
doi: 10.1080/00949655.2017.1326118 |
15 |
Manandhar B , Nandram B . Hierarchical Bayesian models for continuous and positively skewed data from small areas. Communications in Statistics-Theory and Methods, 2021, 50 (4): 944- 962
doi: 10.1080/03610926.2019.1645853 |
16 | Han Ming . E-Bayesian estimation of failure probability and its application. Mathematical and Computer Modelling, 2007, 45 (9/10): 1272- 1279 |
17 |
Jaheen Z F , Okasha H M . E-Bayesian estimation for the Burr type XII model based on type-2 censoring. Applied Mathematical Modelling, 2011, 35 (10): 4730- 4737
doi: 10.1016/j.apm.2011.03.055 |
18 |
Okasha H M , Wang J . E-Bayesian estimation for the geometric model based on record statistics. Applied Mathematical Modelling, 2016, 40 (1): 658- 670
doi: 10.1016/j.apm.2015.05.004 |
19 | Karimnezhad A , Moradi F . Bayes, E-Bayes and robust Bayes prediction of a future observation under precautionary prediction loss functions with applications. Applied Mathematical Modelling, 2016, 40 (15/16): 7051- 7061 |
20 |
Kizilaslan F . E-Bayesian estimation for the proportional hazard rate model based on record values. Communications in Statistics-Simulation and Computation, 2019, 48 (2): 350- 371
doi: 10.1080/03610918.2017.1381736 |
21 | Zhang Y , Zhao M , Zhang S , et al. An integrated approach to estimate storage reliability with initial failures based on E-Bayesian estimates. Reliability Engineering & System Safety, 2017, 159, 24- 36 |
22 |
Gonzalez-Lopez V A , Gholizadeh R , Galarza C E . E-Bayesian estimation for system reliability and availability analysis based on exponential distribution. Communications in Statistics-Simulation and Computation, 2017, 46 (8): 6221- 6241
doi: 10.1080/03610918.2016.1202269 |
23 |
Kiapour A . Bayes, E-Bayes and robust Bayes premium estimation and prediction under the squared log error loss function. Journal of the Iranian Statistical Society, 2018, 17 (1): 33- 47
doi: 10.29252/jirss.17.1.33 |
24 |
Piriaei H , Yari G , Farnoosh R . E-Bayesian estimations for the cumulative hazard rate and mean residual life based on exponential distribution and record data. Journal of Statistical Computation and Simulation, 2020, 90 (2): 271- 290
doi: 10.1080/00949655.2019.1678623 |
25 |
Rabie A , Li J . E-Bayesian estimation for Burr-X distribution based on generalized type-I hybrid censoring scheme. American Journal of Mathematical and Management Sciences, 2020, 39 (1): 41- 55
doi: 10.1080/01966324.2019.1579123 |
26 |
Athirakrishnan R B , Abdul-Sathar E I . E-Bayesian and hierarchical Bayesian estimation of inverse rayleigh distribution. American Journal of Mathematical and Management Sciences, 2022, 41 (1): 70- 87
doi: 10.1080/01966324.2021.1914250 |
27 | 茆诗松, 罗朝斌. 无失效数据的可靠性分析. 数理统计与应用概率, 1989, 4 (4): 489- 506 |
Mao S S , Luo C B . Reliability analysis of zero-failure data. Chinese Mathematical Statistics and Applied Probability, 1989, 4 (4): 489- 506 | |
28 |
Han M . E-Bayesian estimation and its E-MSE under the scaled squared error loss function, for exponential distribution as example. Communications in Statistics-Simulation and Computation, 2019, 48 (6): 1880- 1890
doi: 10.1080/03610918.2018.1425444 |
[1] | 韩明. 不同损失函数下Poisson分布参数的E-Bayes估计及其E-MSE[J]. 数学物理学报, 2019, 39(3): 664-673. |
[2] | 韩明. Poisson分布参数的E-Bayes估计及其性质[J]. 数学物理学报, 2016, 36(5): 1010-1016. |
[3] | 韩明. 二项分布可靠度E-Bayes估计的性质[J]. 数学物理学报, 2013, 33(1): 62-70. |
[4] | 韩明. 只有一个失效数据情形失效概率的E-Bayes估计[J]. 数学物理学报, 2011, 31(2): 577-583. |
[5] | 韩明. 失效概率的E-Bayes估计及其性质[J]. 数学物理学报, 2007, 27(3): 488-495. |
[6] | 韩明, 丁元耀. 失效率的综合E-Bayes估计[J]. 数学物理学报, 2005, 25(5): 678-684. |
|