数学物理学报 ›› 2022, Vol. 42 ›› Issue (1): 157-164.

• 论文 • 上一篇    下一篇

具非定常数初值的全变差方程解的渐近性

高天玲1,夏莉2,*(),周鸣君3,张园园4   

  1. 1 深圳大学数学与统计学院 广东深圳 518060
    2 广东财经大学统计与数学学院 广州 510320
    3 吉林大学数学系 长春 130012
    4 西南财经大学证券与期货学院 成都 611130
  • 收稿日期:2019-03-20 出版日期:2022-02-26 发布日期:2022-02-23
  • 通讯作者: 夏莉 E-mail:xaleysherry@163.com
  • 基金资助:
    国家自然科学基金(11571137);广东省自然科学基金(2015A030313623);广东省自然科学基金(2016A030313048)

The Asymptotic Behavior of Total Variation Flow with the Non-Constant Data

Tianling Gao1,Li Xia2,*(),Mingjun Zhou3,Yuanyuan Zhang4   

  1. 1 College of Mathematics and Statistics, Shenzhen University, Guandong Shenzhen 518060
    2 College of Statistics and Mathematics, Guangdong University of Finance and Economics, Guangzhou 510320
    3 School of Mathematics, Jilin University, Changchun 130012
    4 School of Securities and Futures, Southwestern University of Finance and Economics, Chengdu 611130
  • Received:2019-03-20 Online:2022-02-26 Published:2022-02-23
  • Contact: Li Xia E-mail:xaleysherry@163.com
  • Supported by:
    the NSFC(11571137);the NSF of Guangdong Province(2015A030313623);the NSF of Guangdong Province(2016A030313048)

摘要:

该文主要研究具有非定常数初值的全变差方程解的渐近性,证明了:当参数λ小于某个临界值时,解在有限时间内收敛到一个常数;当参数λ大于某个临界值时,如果初值不是常数,则解在有限时间内一定不收敛到常数.

关键词: 渐近性, 全变差方程, 非常数初值

Abstract:

In this paper, we study the asymptotic behavior for the total variation flow with the non-constant data. We prove that when the tuning parameter λ is less than some critical value, the solution will converge to a constant in a finite time, and when the tuning parameter λ is larger than the critical value, the solution does not converge to any constant in finite time if the initial data is not a constant.

Key words: Asymptotic behavior, Total variation flow, Non-constant data

中图分类号: 

  • O29