1 |
Ambrosio V . Ground states solutions for a non-linear equation involving a pseudo-relativistic Schrödinger operator. J Math Phys, 2016, 5: 051502
|
2 |
Cho Y , Lee S . Strichartz estimates in spherical coordinates. Indiana Univ Math J, 2013, 3: 991- 1020
|
3 |
Choi W , Seok J . Nonrelativistic limit of standing waves for pseudo-relativistic nonlinear Schrödinger equations. J Math Phys, 2016, 2: 021510
|
4 |
Frank R L , Lenzmann E , Silvestre L . Uniqueness of radial solutions for the fractional Laplacian. Comm Pure Appl Math, 2016, 9: 1671- 1726
|
5 |
Fröhlich J , Jonsson B L G , Lenzmann E . Boson stars as solitary waves. Comm Math Phys, 2007, 1: 1- 30
|
6 |
Fröhlich J , Jonsson B L G , Lenzmann E . Effective dynamics for boson stars. Nonlinearity, 2007, 5: 1031- 1075
|
7 |
Fröhlich J , Lenzmann E . Blowup for nonlinear wave equations describing boson stars. Comm Pure Appl Math, 2007, 11: 1691- 1705
|
8 |
Guo Y J , Zeng X Y , Zhou H S . Concentration behavior of standing waves for almost mass critical nonlinear Schrödinger equations. J Differential Equations, 2014, 7: 2079- 2100
|
9 |
Guo Y J , Zeng X Y . Ground states of pseudo-relativistic boson stars under the critical stellar mass. Ann Inst H Poincaré Anal Non Linéaire, 2017, 6: 1611- 1632
|
10 |
Guo Y J , Zeng X Y . The Lieb-Yau conjecture for ground states of pseudo-relativistic Boson stars. J Funct Anal, 2020, 12: 108510
|
11 |
Lenzmann E . Well-posedness for semi-relativistic Hartree equations of critical type. Math Phys Anal Geom, 2007, 1: 43- 64
|
12 |
Lenzmann E . Uniqueness of ground states for pseudorelativistic Hartree equations. Anal PDE, 2009, 1: 1- 27
|
13 |
Lenzmann E , Lewin M . On singularity formation for the L2-critical Boson star equation. Nonlinearity, 2011, 24: 3515- 3540
doi: 10.1088/0951-7715/24/12/009
|
14 |
Lieb E H , Yau H T . The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics. Comm Math Phys, 1987, 1: 147- 174
|
15 |
Yang J F , Yang J G . Existence and mass concentration of pseudo-relativistic Hartree equation. J Math Phy, 2017, 58: 081501
doi: 10.1063/1.4996576
|
16 |
Zeng X Y , Zhang Y M . Existence and asymptotic behavior for the ground state of quasilinear elliptic equations. Adv Nonlinear Stud, 2018, 4: 725- 744
|