1 |
Serrin J . On the interior regularity of weak solutions of the Navier-Stokes equations. Arch Ration Mech Anal, 1962, 9, 187- 195
doi: 10.1007/BF00253344
|
2 |
Bae H , Choe H . A regularity criterion for the Navier-Stokes equations. Comm Partial Differential Equations, 2007, 32, 1173- 1187
doi: 10.1080/03605300701257500
|
3 |
Bae H , Wolf J . A local regularity condition involving two velocity components of Serrin-type for the Navier-Stokes equations. C R Math Acad Sci Paris, 2016, 354, 167- 174
doi: 10.1016/j.crma.2015.10.020
|
4 |
Beirao da Veiga H . A new regularity class for the Navier-Stokes equations in $ {\mathbb R}.{n} $. Chinese Annals of Mathematics Series B, 1995, 16, 407- 412
|
5 |
Berselli L , Manfrin R . On a theorem by Sohr for the Navier-Stokes equations. J Evol Equa, 2004, 4, 193- 211
|
6 |
Bosia S , Pata V , Robinson J . A weak-$ L.p $ Prodi-Serrint type regularity criterion for the Navier-Stokes equations. J Math Fluid Mech, 2014, 16, 721- 725
doi: 10.1007/s00021-014-0182-5
|
7 |
Chae D , Choe H . Regularity of solutions to the Navier-Stokes equation. Electron J Differential Equations, 1999, 5, 1- 7
doi: 10.1080/10236199908808167
|
8 |
Chen Q , Zhang Z . Regularity criterion via two components of vorticity on weak solutions to the Navier-Stokes equations in $ {\mathbb R}.{3} $. J Differential Equations, 2005, 216, 470- 481
doi: 10.1016/j.jde.2005.06.001
|
9 |
Chen Z , Price W . Blow-up rate estimates for weak solutions of the Navier-Stokes equations. R Soc Lond Proc Ser A Math Phys Eng Sci, 2001, 457, 2625- 2642
doi: 10.1098/rspa.2001.0854
|
10 |
Dong B , Chen Z . Regularity criterion of weak solutions to the 3D Navier-Stokes equations via two velocity components. J Math Anal Appl, 2008, 338, 1- 10
doi: 10.1016/j.jmaa.2007.05.003
|
11 |
Ji X , Wang Y , Wei W . New regularity criteria based on pressure or gradient of velocity in Lorentz spaces for the 3D Navier-Stokes equations. J Math Fluid Mech, 2020, 22 (1): Artcile 13
doi: 10.1007/s00021-019-0476-8
|
12 |
Jia X , Zhou Y . Ladyzhenskaya-Prodi-Serrin type regularity criteria for the 3D incompressible MHD equations in terms of $ 3\times3 $ mixture matrices. Nonlinearity, 2015, 28, 3289- 3307
doi: 10.1088/0951-7715/28/9/3289
|
13 |
Kim H , Kozono H . Interior regularity criteria in weak spaces for the Navier-Stokes equations. Manuscripta Math, 2004, 115, 85- 100
|
14 |
Takahashi S . On interior regularity criteria for weak solutions of the Navier-Stokes equations. Manuscripta Math, 1990, 69, 237- 254
|
15 |
Wang W , Zhang Z . On the interior regularity criteria and the number of singular points to the Navier-Stokes equations. J Anal Math, 2014, 123, 139- 170
doi: 10.1007/s11854-014-0016-7
|
16 |
Wang W , Zhang L , Zhang Z . On the interior regularity criteria of the 3-D Navier-Stokes equations involving two velocity components. Discrete Contin Dyn Syst, 2018, 38, 2609- 2627
|
17 |
Wang Y, Wei W, Yu H. $ \varepsilon $-regularity criteria in Lorentz spaces to the 3D Navier-Stokes equations. 2019, arXiv: 1909.09957
|
18 |
Wang Y , Wu G , Zhou D . Some interior regularity criteria involving two components for weak solutions to the 3D Navier-Stokes equations. J Math Fluid Mech, 2018, 20, 2147- 2159
doi: 10.1007/s00021-018-0402-5
|
19 |
Löfström J . Interpolation Spaces. Berlin: Springer-Verlag, 1976
|
20 |
Grafakos L . Classical Fourier Analysis. New York: Springer, 2014
|
21 |
Leray J . Sur le mouvement déun liquide visqueux emplissant léspace. Acta Math, 1934, 63, 193- 248
doi: 10.1007/BF02547354
|
22 |
Malý J. Advanced theory of differentiation-Lorentz spaces. 2003. http://www.karlin.mff.cuni.cz/~maly/lorentz.pdf
|
23 |
He C , Wang Y . On the regularity criteria for weak solutions to the magnetohydrodynamic equations. J Differential Equations, 2007, 238, 1- 17
|
24 |
Sohr H . A regularity class for the Navier-Stokes equations in Lorentz spaces. J Evol Equa, 2001, 1, 441- 467
|
25 |
He C , Wang Y . Limiting case for the regularity criterion of the Navier-Stokes equations and the magnetohydrodynamic equations. Sci China Math, 2010, 53, 1767- 1774
doi: 10.1007/s11425-010-3135-3
|
26 |
O'Neil R . Convolution operators and $ L.{p, q} $ spaces. Duke Math J, 1963, 30, 129- 142
|
27 |
Tartar L . Imbedding theorems of Sobolev spaces into Lorentz spaces. Boll Unione Mat Ital Sez B Artic Ric Mat, 1998, 1, 479- 500
|
28 |
Carrillo J , Ferreira L . Self-similar solutions and large time asymptotics for the dissipative quasi-geostrophic equation. Monatsh Math, 2007, 151, 111- 142
|