数学物理学报 ›› 2021, Vol. 41 ›› Issue (5): 1396-1404.
收稿日期:
2020-08-30
出版日期:
2021-10-26
发布日期:
2021-10-08
作者简介:
周道国, E-mail: 基金资助:
Received:
2020-08-30
Online:
2021-10-26
Published:
2021-10-08
Supported by:
摘要:
该文证明了三维Navier-Stokes方程弱解在尺度不变Lorentz空间中的正则性准则,这些准则依赖于速度或涡度或速度的梯度的水平分量.该结果改进了Navier-Stokes方程的所有已知的关于Lorentz空间或两个分量的正则性准则.
中图分类号:
周道国. 三维Navier-Stokes方程在Lorentz空间中的正则性准则[J]. 数学物理学报, 2021, 41(5): 1396-1404.
Daoguo Zhou. Regularity Criteria in Lorentz Spaces for the Three Dimensional Navier-Stokes Equations[J]. Acta mathematica scientia,Series A, 2021, 41(5): 1396-1404.
1 |
Serrin J . On the interior regularity of weak solutions of the Navier-Stokes equations. Arch Ration Mech Anal, 1962, 9, 187- 195
doi: 10.1007/BF00253344 |
2 |
Bae H , Choe H . A regularity criterion for the Navier-Stokes equations. Comm Partial Differential Equations, 2007, 32, 1173- 1187
doi: 10.1080/03605300701257500 |
3 |
Bae H , Wolf J . A local regularity condition involving two velocity components of Serrin-type for the Navier-Stokes equations. C R Math Acad Sci Paris, 2016, 354, 167- 174
doi: 10.1016/j.crma.2015.10.020 |
4 |
Beirao da Veiga H . A new regularity class for the Navier-Stokes equations in ![]() ![]() |
5 | Berselli L , Manfrin R . On a theorem by Sohr for the Navier-Stokes equations. J Evol Equa, 2004, 4, 193- 211 |
6 |
Bosia S , Pata V , Robinson J . A weak-![]() ![]() ![]() doi: 10.1007/s00021-014-0182-5 |
7 |
Chae D , Choe H . Regularity of solutions to the Navier-Stokes equation. Electron J Differential Equations, 1999, 5, 1- 7
doi: 10.1080/10236199908808167 |
8 |
Chen Q , Zhang Z . Regularity criterion via two components of vorticity on weak solutions to the Navier-Stokes equations in ![]() ![]() doi: 10.1016/j.jde.2005.06.001 |
9 |
Chen Z , Price W . Blow-up rate estimates for weak solutions of the Navier-Stokes equations. R Soc Lond Proc Ser A Math Phys Eng Sci, 2001, 457, 2625- 2642
doi: 10.1098/rspa.2001.0854 |
10 |
Dong B , Chen Z . Regularity criterion of weak solutions to the 3D Navier-Stokes equations via two velocity components. J Math Anal Appl, 2008, 338, 1- 10
doi: 10.1016/j.jmaa.2007.05.003 |
11 |
Ji X , Wang Y , Wei W . New regularity criteria based on pressure or gradient of velocity in Lorentz spaces for the 3D Navier-Stokes equations. J Math Fluid Mech, 2020, 22 (1): Artcile 13
doi: 10.1007/s00021-019-0476-8 |
12 |
Jia X , Zhou Y . Ladyzhenskaya-Prodi-Serrin type regularity criteria for the 3D incompressible MHD equations in terms of ![]() ![]() ![]() doi: 10.1088/0951-7715/28/9/3289 |
13 | Kim H , Kozono H . Interior regularity criteria in weak spaces for the Navier-Stokes equations. Manuscripta Math, 2004, 115, 85- 100 |
14 | Takahashi S . On interior regularity criteria for weak solutions of the Navier-Stokes equations. Manuscripta Math, 1990, 69, 237- 254 |
15 |
Wang W , Zhang Z . On the interior regularity criteria and the number of singular points to the Navier-Stokes equations. J Anal Math, 2014, 123, 139- 170
doi: 10.1007/s11854-014-0016-7 |
16 | Wang W , Zhang L , Zhang Z . On the interior regularity criteria of the 3-D Navier-Stokes equations involving two velocity components. Discrete Contin Dyn Syst, 2018, 38, 2609- 2627 |
17 |
Wang Y, Wei W, Yu H. ![]() |
18 |
Wang Y , Wu G , Zhou D . Some interior regularity criteria involving two components for weak solutions to the 3D Navier-Stokes equations. J Math Fluid Mech, 2018, 20, 2147- 2159
doi: 10.1007/s00021-018-0402-5 |
19 | Löfström J . Interpolation Spaces. Berlin: Springer-Verlag, 1976 |
20 | Grafakos L . Classical Fourier Analysis. New York: Springer, 2014 |
21 |
Leray J . Sur le mouvement déun liquide visqueux emplissant léspace. Acta Math, 1934, 63, 193- 248
doi: 10.1007/BF02547354 |
22 | Malý J. Advanced theory of differentiation-Lorentz spaces. 2003. http://www.karlin.mff.cuni.cz/~maly/lorentz.pdf |
23 | He C , Wang Y . On the regularity criteria for weak solutions to the magnetohydrodynamic equations. J Differential Equations, 2007, 238, 1- 17 |
24 | Sohr H . A regularity class for the Navier-Stokes equations in Lorentz spaces. J Evol Equa, 2001, 1, 441- 467 |
25 |
He C , Wang Y . Limiting case for the regularity criterion of the Navier-Stokes equations and the magnetohydrodynamic equations. Sci China Math, 2010, 53, 1767- 1774
doi: 10.1007/s11425-010-3135-3 |
26 |
O'Neil R . Convolution operators and ![]() ![]() ![]() ![]() ![]() |
27 | Tartar L . Imbedding theorems of Sobolev spaces into Lorentz spaces. Boll Unione Mat Ital Sez B Artic Ric Mat, 1998, 1, 479- 500 |
28 | Carrillo J , Ferreira L . Self-similar solutions and large time asymptotics for the dissipative quasi-geostrophic equation. Monatsh Math, 2007, 151, 111- 142 |
[1] | 邹维林, 任远春, 肖美萍. 系数的![]() ![]() ![]() ![]() ![]() |
[2] | 钟澎洪,陈兴发. Landau-Lifshitz方程平面波解的全局光滑性[J]. 数学物理学报, 2021, 41(3): 729-739. |
[3] | 冯欣怡,孙祥凯. 一类带DC函数的分式优化的Farkas引理刻画[J]. 数学物理学报, 2021, 41(3): 827-836. |
[4] | 郭尚喜. 一维可压缩Navier-Stokes方程初值问题强解的整体存在性[J]. 数学物理学报, 2021, 41(3): 642-651. |
[5] | 徐明月,赵才地,TomásCaraballo. 三维不可压Navier-Stokes方程组轨道统计解的退化正则性[J]. 数学物理学报, 2021, 41(2): 336-344. |
[6] | 西宣宣,侯咪咪,周先锋. 非自治Caputo分数阶发展方程弱解的适定性与不变集[J]. 数学物理学报, 2021, 41(1): 149-165. |
[7] | 罗娇,漆前,罗宏. 高阶各向异性Cahn-Hilliard-Navier-Stokes系统的弱解[J]. 数学物理学报, 2020, 40(6): 1599-1611. |
[8] | 佟玉霞,王薪茹,谷建涛. Orlicz空间中A-调和方程很弱解得Lϕ估计[J]. 数学物理学报, 2020, 40(6): 1461-1480. |
[9] | 刘莉萍,杨航,马璇. 带inflow边界条件的Landau方程解的性态研究[J]. 数学物理学报, 2020, 40(4): 904-917. |
[10] | 李强. 分数阶扩散的三维液晶方程的整体正则性[J]. 数学物理学报, 2020, 40(4): 918-924. |
[11] | 张雅楠,闫硕,佟玉霞. 自然增长条件下的非齐次A-调和方程弱解的梯度估计[J]. 数学物理学报, 2020, 40(2): 379-394. |
[12] | 李翠霞,吴世良. 广义绝对值方程组唯一可行解注记[J]. 数学物理学报, 2020, 40(1): 44-48. |
[13] | 张利民,徐海燕,金春花. 具渗流扩散和间接信号产生的Prey-Taxis模型解的整体存在性与稳定性[J]. 数学物理学报, 2019, 39(6): 1381-1404. |
[14] | 张秋月. 带有分数阶耗散的三维广义Oldroyd-B模型的整体正则性[J]. 数学物理学报, 2019, 39(5): 1125-1135. |
[15] | 张辉,许娟. 涉及水平分量的NS方程与MHD方程的正则性准则[J]. 数学物理学报, 2019, 39(5): 1136-1145. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 192
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 154
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|