数学物理学报 ›› 2021, Vol. 41 ›› Issue (5): 1382-1395.
收稿日期:
2020-03-24
出版日期:
2021-10-26
发布日期:
2021-10-08
通讯作者:
杨作东
E-mail:jin@263.net
基金资助:
Received:
2020-03-24
Online:
2021-10-26
Published:
2021-10-08
Contact:
Zuodong Yang
E-mail:jin@263.net
Supported by:
摘要:
该文研究如下带齐次Neumann边界条件的趋化-趋触模型的初边值问题 ,
,
,
,
(
)
(
)
,
中图分类号:
贾哲,杨作东. 带非线性扩散项和信号产生项的趋化-趋触模型解的整体有界性[J]. 数学物理学报, 2021, 41(5): 1382-1395.
Zhe Jia,Zuodong Yang. Global Boundedness in a Chemotaxis-Haptotaxis Model with Nonlinear Diffusion and Signal Production[J]. Acta mathematica scientia,Series A, 2021, 41(5): 1382-1395.
1 |
Winkler M . Does a 'volume-filling effect' always prevent chemotactic collapse?. Math Methods Appl Sci, 2010, 33, 12- 24
doi: 10.1002/mma.1146 |
2 |
Tao Y , Winkler M . Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity. J Differential Equations, 2012, 252, 692- 715
doi: 10.1016/j.jde.2011.08.019 |
3 |
Ishida S , Seki K , Yokota T . Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains. J Differential Equations, 2014, 256, 2993- 3010
doi: 10.1016/j.jde.2014.01.028 |
4 |
CieśLak T , Stinner C . New critical exponents in a fully parabolic quasilinear Keller-Segel and applications to volume filling models. J Differential Equations, 2015, 258, 2080- 2113
doi: 10.1016/j.jde.2014.12.004 |
5 |
Zheng J . Boundedness of solutions to a quasilinear parabolic-parabolic Keller-Segel system with a logistic source. J Math Anal Appl, 2015, 431, 867- 888
doi: 10.1016/j.jmaa.2015.05.071 |
6 |
Tao X , Zhou A , Ding M . Boundedness of solutions to a quasilinear parabolic-parabolic chemotaxis model with nonlinear signal production. J Math Anal Appl, 2019, 474, 733- 747
doi: 10.1016/j.jmaa.2019.01.076 |
7 |
Ding M , Wang W , Zhou S , Zheng S . Asymptotic stability in a fully parabolic quasilinear chemotaxis model with general logistic source and signal production. J Differential Equations, 2020, 268 (11): 6729- 6777
doi: 10.1016/j.jde.2019.11.052 |
8 |
Winkler M . Finite-time blow-up in low-dimensional Keller-Segel systems with logistic-type superlinear degradation. Z Angew Math Phys, 2018, 69, 40
doi: 10.1007/s00033-018-0935-8 |
9 |
Cieslak T , Stinner C . Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions. J Differential Equations, 2012, 252, 5832- 5851
doi: 10.1016/j.jde.2012.01.045 |
10 |
Cieslak T , Winkler M . Finite-time blow-up in a quasilinear system of chemotaxis. Nonlinearity, 2008, 21, 1057- 1076
doi: 10.1088/0951-7715/21/5/009 |
11 | Herrero M , Velázquez J . A blow-up mechanism for a chemotaxis model. Ann Sc Norm Super Pisa Cl Sci, 1997, 24 (4): 633- 683 |
12 | Nagai T . Blow-up of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains. J Inequal Appl, 2001, 6, 37- 55 |
13 |
Osaki K , Tsujikawa T , Yagi A , Mimura M . Exponential attractor for a chemotaxis-growth system of equations. Nonlinear Anal, 2002, 51, 119- 144
doi: 10.1016/S0362-546X(01)00815-X |
14 | Painter K J , Hillen T . Volume-filling and quorum-sensing in models for chemosensitive movement. Can Appl Math Q, 2002, 10, 501- 543 |
15 | Wang L , Li Y , Mu C . Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source. Discrete Contin Dyn Syst Ser A, 2014, 34, 789- 802 |
16 |
Winkler M . Chemotaxis with logistic source: very weak global solutions and their boundedness properties. J Math Anal Appl, 2008, 348, 708- 729
doi: 10.1016/j.jmaa.2008.07.071 |
17 |
Winkler M . Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source. Comm Partial Differ Equ, 2010, 35, 1516- 1537
doi: 10.1080/03605300903473426 |
18 |
Winkler M . Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction. J Math Anal Appl, 2011, 384, 261- 272
doi: 10.1016/j.jmaa.2011.05.057 |
19 |
Zhuang M , Wang W , Zheng S . Boundedness in a fully parabolic chemotaxis system with logistic-type source and nonlinear production. Nonlinear Analysis: Real World Appl, 2019, 47, 473- 483
doi: 10.1016/j.nonrwa.2018.12.001 |
20 |
Zeng Y . Existence of global bounded classical solution to a quasilinear attraction-repulsion chemotaxis system with logistic source. Nonlinear Anal, 2017, 161, 182- 197
doi: 10.1016/j.na.2017.06.003 |
21 |
Ren G , Liu B . Global boundedness and asymptotic behavior in a quasilinear attraction-repulsion chemotaxis model with nonlinear signal production and logistic-type source. Math Models Methods Appl Sci, 2020, 30 (13): 2619- 2689
doi: 10.1142/S0218202520500517 |
22 |
Winkler M . Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity. Calc Var Partial Differ Equ, 2015, 54, 3789- 3828
doi: 10.1007/s00526-015-0922-2 |
23 |
Litcanu G , Morales-Rodrigo C . Asymptotic behavior of global solutions to a model of cell invasion. Math Models Methods Appl Sci, 2010, 20 (9): 1721- 1758
doi: 10.1142/S0218202510004775 |
24 |
Marciniak-Czochra A , Ptashnyk M . Boundedness of solutions of a haptotaxis model. Math Models Methods Appl Sci, 2010, 20 (3): 449- 476
doi: 10.1142/S0218202510004301 |
25 | Chaplain M , Lolas G . Mathematical modelling of cancer invasion of tissue: Dynamic heterogeneity. Netw Heterogen Media, 2016, 1, 399- 439 |
26 |
Tao Y , Wang M . Global solution for a chemotactic-haptotactic model of cancer invasion. Nonlinearity, 2008, 21, 2221- 2238
doi: 10.1088/0951-7715/21/10/002 |
27 |
Tao Y . Global existence of classical solutions to a combined chemotaxis-haptotaxis model with logistic source. J Math Anal Appl, 2009, 354, 60- 69
doi: 10.1016/j.jmaa.2008.12.039 |
28 | Tao Y. Boundedness in a two-dimensional chemotaxis-haptotaxis system. 2014, arXiv: 1407.7382 |
29 |
Cao X . Boundedness in a three-dimensional chemotaxis-haptotaxis model. Z Angew Math Phys, 2016, 67, 11
doi: 10.1007/s00033-015-0601-3 |
30 |
Zheng J , Ke Y . Large time behavior of solutions to a fully parabolic chemotaxis-haptotaxis model in ![]() doi: 10.1016/j.jde.2018.08.018 |
31 |
Tao Y , winkler M . A chemotaxis-haptotaxis model: the roles of nonlinear diffusion and logistic source. SIAM J Math Anal, 2011, 43, 685- 704
doi: 10.1137/100802943 |
32 |
Li Y , Lankeit J . Boundedness in a chemotaxis-haptotaxis model with nonlinear diffusion. Nonlinearity, 2016, 29, 1564- 1595
doi: 10.1088/0951-7715/29/5/1564 |
33 |
Wang Y . Boundedness in the higher-dimensional chemotaxis-haptotaxis model with nonlinear diffusion. J Differential Equations, 2016, 260, 1975- 1989
doi: 10.1016/j.jde.2015.09.051 |
34 |
Wang Y . Boundedness in a multi-dimensional chemotaxis-haptotaxis model with nonlinear diffusion. Appl Math Lett, 2016, 59, 122- 126
doi: 10.1016/j.aml.2016.03.019 |
35 | Zheng P , Mu C , Song X . On the boundedness and decay of solutions for a chemotaxis-haptotaxis system with nonlinear diffusion. Discrete Contin Dyn Syst Ser A, 2016, 36, 1737- 1757 |
36 |
Liu L , Zheng J , Li Y , Yan W . A new (and optimal) result for boundedness of solution of a quasilinear chemotaxis-haptotaxis model (with logistic source). J Math Anal Appl, 2020, 491, 124231
doi: 10.1016/j.jmaa.2020.124231 |
37 | Jin C . Boundedness and global solvability to a chemotaxis-haptotaxis model with slow and fast diffusion. Discrete Contin Dyn Syst Ser B, 2018, 23 (4): 1675- 1688 |
38 |
Liu J , Zheng J , Wang Y . Boundedness in a quasilinear chemotaxis-haptotaxis system with logistic source. Z Angew Math Phys, 2016, 67, 21
doi: 10.1007/s00033-016-0620-8 |
39 |
Xu H , Zhang L , Jin C . Global solvability and large time behavior to a chemotaxis-haptotaxis model with nonlinear diffusion. Nonlinear Anal: Real World Appl, 2019, 46, 238- 256
doi: 10.1016/j.nonrwa.2018.09.019 |
40 |
Dai F , Liu B . Asymptotic stability in a quasilinear chemotaxis-haptotaxis model with general logistic source and nonlinear signal production. J Differential Equations, 2020, 269, 10839- 10918
doi: 10.1016/j.jde.2020.07.027 |
41 |
Winkler M . Aggregation vs global diffusive behavior in the higher-dimensional Keller-Segel model. J Differential Equations, 2010, 248, 2889- 2905
doi: 10.1016/j.jde.2010.02.008 |
42 |
Jin C . Global classical solution and boundedness to a chemotaxis-haptotaxis model with re-establishment mechanisms. Bull Lond Math Soc, 2018, 50, 598- 618
doi: 10.1112/blms.12160 |
[1] | 王娟,原子霞. 具有对数敏感度和混合边界的一维趋化模型解的整体存在性和收敛性[J]. 数学物理学报, 2020, 40(6): 1646-1669. |
[2] | 唐鹏程,徐思,张学军. Cn中对数权一般函数空间上的Bergman型算子[J]. 数学物理学报, 2020, 40(5): 1151-1162. |
[3] | 韩瑶瑶,赵凯. Marcinkiewicz积分算子及其交换子在非齐度量测度空间上的有界性[J]. 数学物理学报, 2020, 40(3): 597-610. |
[4] | 赵艳辉,吴修云,廖春艳. 单位球上加权Bergman空间到Ƶμ型空间的加权Cesàro算子[J]. 数学物理学报, 2020, 40(3): 569-578. |
[5] | 徐思,张学军. 单位球上正规权Zygmund空间上的加权复合算子[J]. 数学物理学报, 2020, 40(2): 288-303. |
[6] | 郭雨婷,尚清丽,张学军. 单位球上正规权Zygmund空间上的点乘子[J]. 数学物理学报, 2018, 38(6): 1041-1048. |
[7] | 王晚生, 钟鹏, 赵新阳. 非线性中立型变延迟微分方程的长时间稳定性[J]. 数学物理学报, 2018, 38(1): 96-109. |
[8] | 高红亚, 贾苗苗. 障碍问题解的局部正则性和局部有界性[J]. 数学物理学报, 2017, 37(4): 706-713. |
[9] | 赵艳辉, 张学军. 单位球上Dirichlet型空间到Zμ型空间的积分型算子[J]. 数学物理学报, 2017, 37(2): 217-227. |
[10] | 邱华, 张颖姝, 房少梅. 不可压粘弹性流体的Leray-α-Oldroyd模型整体解的存在性[J]. 数学物理学报, 2017, 37(1): 102-112. |
[11] | 郜欣春, 周健, 田苗青. 带有Logistic源的吸引-排斥趋化性系统的整体有界性和渐近行为[J]. 数学物理学报, 2017, 37(1): 113-121. |
[12] | 刘洋. 位势井及其对具临界初始能量的非牛顿渗流方程的应用[J]. 数学物理学报, 2016, 36(6): 1211-1220. |
[13] | 张宏伟, 刘功伟, 呼青英. 一类具对数源项波动方程的初边值问题[J]. 数学物理学报, 2016, 36(6): 1124-1136. |
[14] | 谭春雨, 王茂发. 从Zygmund空间和F(p,q,s)空间到Bμ空间的广义复合算子[J]. 数学物理学报, 2015, 35(4): 815-823. |
[15] | 陆恒, 张太忠. 从α-Zygmund空间到β-Bloch空间的加权复合算子[J]. 数学物理学报, 2015, 35(4): 748-755. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 121
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 108
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|