数学物理学报 ›› 2021, Vol. 41 ›› Issue (5): 1382-1395.

• 论文 • 上一篇    下一篇

带非线性扩散项和信号产生项的趋化-趋触模型解的整体有界性

贾哲1,杨作东2,3,*()   

  1. 1 临沂大学数学与统计学院 山东临沂 276005
    2 南京师范大学教师教育学院 南京 210097
    3 南京信息工程大学教师教育学院 南京 210044
  • 收稿日期:2020-03-24 出版日期:2021-10-26 发布日期:2021-10-08
  • 通讯作者: 杨作东 E-mail:jin@263.net
  • 基金资助:
    国家自然科学基金(11571093);江苏省教育委员会自然科学基金(19KJB110016);临沂大学科研启动基金(LYDX2020BS014)

Global Boundedness in a Chemotaxis-Haptotaxis Model with Nonlinear Diffusion and Signal Production

Zhe Jia1,Zuodong Yang2,3,*()   

  1. 1 School of Mathematics and Statistics, Linyi University, Shandong Linyi 276005
    2 School of Teacher Education, Nanjing Normal University, Nanjing 210097
    3 School of Teacher Education, Nanjing University of Information Science and Technology, Nanjing 210044
  • Received:2020-03-24 Online:2021-10-26 Published:2021-10-08
  • Contact: Zuodong Yang E-mail:jin@263.net
  • Supported by:
    the NSFC(11571093);the NSF of Jiangsu Education Commission(19KJB110016);the Scientific Research Foundation of Linyi University(LYDX2020BS014)

摘要:

该文研究如下带齐次Neumann边界条件的趋化-趋触模型的初边值问题 其中$\Omega\subset\mathbb{R}^{3}$为有界域,$\chi,\xi,\mu,\lambda,\gamma >0$$k>1$$a\in\mathbb{R}$,且$D(u)\geq C_{D}(u+1)^{m-1}$,其中$C_{D}>0,m\in\mathbb{R}$.主要结论如下(i)当$0<\gamma\leq\frac{2}{3}$时,若$\alpha>\gamma-k+1$并且$\beta>1-k$,上述模型存在整体有界的古典解.(ii)当$\frac{2}{3}<\gamma\leq1$时,若$\alpha>\gamma-k+\frac{1}{e}+1$并且 或者$\alpha>\gamma-k+1$并且 上述模型存在整体有界的古典解.

关键词: 整体存在性, 有界性, 趋化-趋触, 非线性扩散

Abstract:

This paper is concerned with an initial-boundary value problem for the following chemotaxis-haptotaxis model under homogenous Neumann boundary condition in a bounded domain $ \Omega \subset \mathbb{R} ^{3} $, with $ \chi, \xi, \mu,\lambda,$ $\gamma >0$, $k>1$, $a \in \mathbb{R} $, and $D(u)\geq C_{D} (u+1)^{m-1}$ for $C_{D}>0, m\in \mathbb{R} $. It is shown that(i) For $0<\gamma\leq\frac{2}{3}$, if $\alpha>\gamma-k+1$ and $\beta>1-k$, there is a classical solution $(u, v, w)$ which is globally bounded to the above problem.(ii) For $\frac{2}{3}<\gamma\leq1$, if $\alpha>\gamma-k+\frac{1}{e}+1$ and or $\alpha>\gamma-k+1$ and there is a classical solution $(u, v, w)$ which is globally bounded to the above problem.

Key words: Global existence, Boundedness, Chemotaxis-haptotaxis, Nonlinear diffusion

中图分类号: 

  • O175.26