1 |
Winkler M . Does a 'volume-filling effect' always prevent chemotactic collapse?. Math Methods Appl Sci, 2010, 33, 12- 24
doi: 10.1002/mma.1146
|
2 |
Tao Y , Winkler M . Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity. J Differential Equations, 2012, 252, 692- 715
doi: 10.1016/j.jde.2011.08.019
|
3 |
Ishida S , Seki K , Yokota T . Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains. J Differential Equations, 2014, 256, 2993- 3010
doi: 10.1016/j.jde.2014.01.028
|
4 |
CieśLak T , Stinner C . New critical exponents in a fully parabolic quasilinear Keller-Segel and applications to volume filling models. J Differential Equations, 2015, 258, 2080- 2113
doi: 10.1016/j.jde.2014.12.004
|
5 |
Zheng J . Boundedness of solutions to a quasilinear parabolic-parabolic Keller-Segel system with a logistic source. J Math Anal Appl, 2015, 431, 867- 888
doi: 10.1016/j.jmaa.2015.05.071
|
6 |
Tao X , Zhou A , Ding M . Boundedness of solutions to a quasilinear parabolic-parabolic chemotaxis model with nonlinear signal production. J Math Anal Appl, 2019, 474, 733- 747
doi: 10.1016/j.jmaa.2019.01.076
|
7 |
Ding M , Wang W , Zhou S , Zheng S . Asymptotic stability in a fully parabolic quasilinear chemotaxis model with general logistic source and signal production. J Differential Equations, 2020, 268 (11): 6729- 6777
doi: 10.1016/j.jde.2019.11.052
|
8 |
Winkler M . Finite-time blow-up in low-dimensional Keller-Segel systems with logistic-type superlinear degradation. Z Angew Math Phys, 2018, 69, 40
doi: 10.1007/s00033-018-0935-8
|
9 |
Cieslak T , Stinner C . Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions. J Differential Equations, 2012, 252, 5832- 5851
doi: 10.1016/j.jde.2012.01.045
|
10 |
Cieslak T , Winkler M . Finite-time blow-up in a quasilinear system of chemotaxis. Nonlinearity, 2008, 21, 1057- 1076
doi: 10.1088/0951-7715/21/5/009
|
11 |
Herrero M , Velázquez J . A blow-up mechanism for a chemotaxis model. Ann Sc Norm Super Pisa Cl Sci, 1997, 24 (4): 633- 683
|
12 |
Nagai T . Blow-up of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains. J Inequal Appl, 2001, 6, 37- 55
|
13 |
Osaki K , Tsujikawa T , Yagi A , Mimura M . Exponential attractor for a chemotaxis-growth system of equations. Nonlinear Anal, 2002, 51, 119- 144
doi: 10.1016/S0362-546X(01)00815-X
|
14 |
Painter K J , Hillen T . Volume-filling and quorum-sensing in models for chemosensitive movement. Can Appl Math Q, 2002, 10, 501- 543
|
15 |
Wang L , Li Y , Mu C . Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source. Discrete Contin Dyn Syst Ser A, 2014, 34, 789- 802
|
16 |
Winkler M . Chemotaxis with logistic source: very weak global solutions and their boundedness properties. J Math Anal Appl, 2008, 348, 708- 729
doi: 10.1016/j.jmaa.2008.07.071
|
17 |
Winkler M . Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source. Comm Partial Differ Equ, 2010, 35, 1516- 1537
doi: 10.1080/03605300903473426
|
18 |
Winkler M . Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction. J Math Anal Appl, 2011, 384, 261- 272
doi: 10.1016/j.jmaa.2011.05.057
|
19 |
Zhuang M , Wang W , Zheng S . Boundedness in a fully parabolic chemotaxis system with logistic-type source and nonlinear production. Nonlinear Analysis: Real World Appl, 2019, 47, 473- 483
doi: 10.1016/j.nonrwa.2018.12.001
|
20 |
Zeng Y . Existence of global bounded classical solution to a quasilinear attraction-repulsion chemotaxis system with logistic source. Nonlinear Anal, 2017, 161, 182- 197
doi: 10.1016/j.na.2017.06.003
|
21 |
Ren G , Liu B . Global boundedness and asymptotic behavior in a quasilinear attraction-repulsion chemotaxis model with nonlinear signal production and logistic-type source. Math Models Methods Appl Sci, 2020, 30 (13): 2619- 2689
doi: 10.1142/S0218202520500517
|
22 |
Winkler M . Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity. Calc Var Partial Differ Equ, 2015, 54, 3789- 3828
doi: 10.1007/s00526-015-0922-2
|
23 |
Litcanu G , Morales-Rodrigo C . Asymptotic behavior of global solutions to a model of cell invasion. Math Models Methods Appl Sci, 2010, 20 (9): 1721- 1758
doi: 10.1142/S0218202510004775
|
24 |
Marciniak-Czochra A , Ptashnyk M . Boundedness of solutions of a haptotaxis model. Math Models Methods Appl Sci, 2010, 20 (3): 449- 476
doi: 10.1142/S0218202510004301
|
25 |
Chaplain M , Lolas G . Mathematical modelling of cancer invasion of tissue: Dynamic heterogeneity. Netw Heterogen Media, 2016, 1, 399- 439
|
26 |
Tao Y , Wang M . Global solution for a chemotactic-haptotactic model of cancer invasion. Nonlinearity, 2008, 21, 2221- 2238
doi: 10.1088/0951-7715/21/10/002
|
27 |
Tao Y . Global existence of classical solutions to a combined chemotaxis-haptotaxis model with logistic source. J Math Anal Appl, 2009, 354, 60- 69
doi: 10.1016/j.jmaa.2008.12.039
|
28 |
Tao Y. Boundedness in a two-dimensional chemotaxis-haptotaxis system. 2014, arXiv: 1407.7382
|
29 |
Cao X . Boundedness in a three-dimensional chemotaxis-haptotaxis model. Z Angew Math Phys, 2016, 67, 11
doi: 10.1007/s00033-015-0601-3
|
30 |
Zheng J , Ke Y . Large time behavior of solutions to a fully parabolic chemotaxis-haptotaxis model in $ N $ dimensions. J Differential Equations, 2019, 266, 1969- 2018
doi: 10.1016/j.jde.2018.08.018
|
31 |
Tao Y , winkler M . A chemotaxis-haptotaxis model: the roles of nonlinear diffusion and logistic source. SIAM J Math Anal, 2011, 43, 685- 704
doi: 10.1137/100802943
|
32 |
Li Y , Lankeit J . Boundedness in a chemotaxis-haptotaxis model with nonlinear diffusion. Nonlinearity, 2016, 29, 1564- 1595
doi: 10.1088/0951-7715/29/5/1564
|
33 |
Wang Y . Boundedness in the higher-dimensional chemotaxis-haptotaxis model with nonlinear diffusion. J Differential Equations, 2016, 260, 1975- 1989
doi: 10.1016/j.jde.2015.09.051
|
34 |
Wang Y . Boundedness in a multi-dimensional chemotaxis-haptotaxis model with nonlinear diffusion. Appl Math Lett, 2016, 59, 122- 126
doi: 10.1016/j.aml.2016.03.019
|
35 |
Zheng P , Mu C , Song X . On the boundedness and decay of solutions for a chemotaxis-haptotaxis system with nonlinear diffusion. Discrete Contin Dyn Syst Ser A, 2016, 36, 1737- 1757
|
36 |
Liu L , Zheng J , Li Y , Yan W . A new (and optimal) result for boundedness of solution of a quasilinear chemotaxis-haptotaxis model (with logistic source). J Math Anal Appl, 2020, 491, 124231
doi: 10.1016/j.jmaa.2020.124231
|
37 |
Jin C . Boundedness and global solvability to a chemotaxis-haptotaxis model with slow and fast diffusion. Discrete Contin Dyn Syst Ser B, 2018, 23 (4): 1675- 1688
|
38 |
Liu J , Zheng J , Wang Y . Boundedness in a quasilinear chemotaxis-haptotaxis system with logistic source. Z Angew Math Phys, 2016, 67, 21
doi: 10.1007/s00033-016-0620-8
|
39 |
Xu H , Zhang L , Jin C . Global solvability and large time behavior to a chemotaxis-haptotaxis model with nonlinear diffusion. Nonlinear Anal: Real World Appl, 2019, 46, 238- 256
doi: 10.1016/j.nonrwa.2018.09.019
|
40 |
Dai F , Liu B . Asymptotic stability in a quasilinear chemotaxis-haptotaxis model with general logistic source and nonlinear signal production. J Differential Equations, 2020, 269, 10839- 10918
doi: 10.1016/j.jde.2020.07.027
|
41 |
Winkler M . Aggregation vs global diffusive behavior in the higher-dimensional Keller-Segel model. J Differential Equations, 2010, 248, 2889- 2905
doi: 10.1016/j.jde.2010.02.008
|
42 |
Jin C . Global classical solution and boundedness to a chemotaxis-haptotaxis model with re-establishment mechanisms. Bull Lond Math Soc, 2018, 50, 598- 618
doi: 10.1112/blms.12160
|