数学物理学报 ›› 2021, Vol. 41 ›› Issue (5): 1405-1414.
收稿日期:
2020-07-16
出版日期:
2021-10-26
发布日期:
2021-10-08
通讯作者:
邹维林
E-mail:zwl267@163.com;320029374@qq.com;59653147@qq.com
作者简介:
任远春, E-mail: 基金资助:
Weilin Zou*(),Yuanchun Ren(),Meipin Xiao()
Received:
2020-07-16
Online:
2021-10-26
Published:
2021-10-08
Contact:
Weilin Zou
E-mail:zwl267@163.com;320029374@qq.com;59653147@qq.com
Supported by:
摘要:
该文主要研究一类非线性退化椭圆型方程
中图分类号:
邹维林,任远春,肖美萍. 系数的L1相互关系对非线性退化椭圆方程解的正则性的影响[J]. 数学物理学报, 2021, 41(5): 1405-1414.
Weilin Zou,Yuanchun Ren,Meipin Xiao. Regularizing Effect of L1 Interplay Between Coefficients in Nonlinear Degenerate Elliptic Equations[J]. Acta mathematica scientia,Series A, 2021, 41(5): 1405-1414.
1 |
Fabrie P , Gallouët T . Modelling wells in porous media flows. Math Models Methods Appl Sci, 2000, 10, 673- 709
doi: 10.1142/S0218202500000367 |
2 |
Rakotoson J M . Existence of bounded of some degenerate quasilinear elliptic equations. Comm Partial Differential Equations, 1987, 12 (6): 633- 676
doi: 10.1080/03605308708820505 |
3 |
Giachetti D , Maroscia G . Existence results for a class of porous medium type equations with a quadratic gradient term. J Evol Equ, 2008, 8, 155- 188
doi: 10.1007/s00028-007-0362-3 |
4 |
Fang Z , Li G . Extinction and decay estimates of solutions for a class of doubly degenerate equations. Applied Mathematics Letters, 2012, 25 (11): 1795- 1802
doi: 10.1016/j.aml.2012.02.020 |
5 | Vázquez J L . The Porous Medium Equation. Mathematical Theory. Oxford: Oxford Univ Press, 2007 |
6 |
Li F Q . Some nonlinear elliptic systems with right-hand side integrable data with respect to the distance to the boundary. Science China Mathematics, 2014, 57 (9): 1891- 1910
doi: 10.1007/s11425-014-4795-1 |
7 | Yin J X , Wang L W , Huang R . Complexity of asymptotic behavior of solutions for the porous medium equation with absorption. Acta Mathematica Scientia, 2010, 30B (6): 1865- 1880 |
8 | Wu X L , Gao W J . Blow-up of the Solution for a class of porous medium equation with positive initial energy. Acta Math Sci, 2013, 33B (4): 1024- 1030 |
9 | Liu D M , Mu C L , Xin Q . Lower bounds estimate for the blow-up time of a nonlinear nonlocal porous medium equation. Acta Math Sci, 2012, 32B (3): 1206- 1212 |
10 |
Li F C , Xie C H . Global existence and blow-up for a nonlinear porous medium equation. Appl Math Lett, 2003, 16, 185- 192
doi: 10.1016/S0893-9659(03)80030-7 |
11 |
Wang J , Wang Z J , Yin J X . A class of degenerate diffusion equations with mixed boundary conditions. J Math Anal Appl, 2004, 298 (2): 589- 603
doi: 10.1016/j.jmaa.2004.05.028 |
12 |
Boccardo L , Segura de León S , Trombettic C . Bounded and unbounded solutions for a class of quasi-linear elliptic problems with a quadratic gradient term. J Math Pures Appl, 2001, 80 (9): 919- 940
doi: 10.1016/S0021-7824(01)01211-9 |
13 |
Dall'Aglio A , Giachetti D , Leone C , León S . Quasi-linear parabolic equations with degenerate coercivity having a quadratic gradient term. Ann Inst H Poincaré Anal Nonlinéaire, 2006, 23, 97- 126
doi: 10.1016/j.anihpc.2005.02.006 |
14 | Ferone V , Posteraro M R , Rakotoson J M . $ L.\infty $-estimates for nonlinear elliptic problems with $ p $-growth in the gradient. J Inequal Appl, 1999, 3 (2): 109- 125 |
15 |
Arcoya D , Boccardo L . Regularizing effect of the interplay between coefficients in some elliptic equations. J Funct Anal, 2015, 268 (5): 1153- 1166
doi: 10.1016/j.jfa.2014.11.011 |
16 |
Arcoya D , Boccardo L . Regularizing effect of $ L.q $ interplay between coefficients in some elliptic equations. J Math Pures Appl, 2018, 111, 106- 125
doi: 10.1016/j.matpur.2017.08.001 |
17 |
Li Z Q . Existence result to a parabolic equation with quadratic gradient term and an $ L.1 $ source. Acta Applicandae Mathematicae, 2019, 163 (1): 145- 156
doi: 10.1007/s10440-018-0217-7 |
18 |
Moreno M L . A quasilinear Dirichlet problem with quadratic growth respect to the gradient and $ L.{1} $ data. Nonlinear Anal, 2014, 95, 450- 459
doi: 10.1016/j.na.2013.09.014 |
19 | Alvino A , Boccardo L , Ferone V , et al. Existence results for nonlinear elliptic equations with degenerate coercivity. Ann Mat Pura Appl, 2003, 182 (4): 53- 79 |
20 | Zheng J , Tavares L S . The obstacle problem for nonlinear noncoercive elliptic equations with $ L.1 $-data. Journal of Inequalities and Applications, 2019, 205, 1- 15 |
21 | Chlebicka I. Regularizing effect of the lower-order terms in elliptic problems with Orlicz growth. 2019, arXiv: 1902.05314 |
22 |
李仲庆, 高文杰. 一类具低阶项和退化强制的椭圆方程的有界弱解. 数学物理学报, 2019, 39A (3): 529- 534
doi: 10.3969/j.issn.1003-3998.2019.03.012 |
Li Z Q , Gao W J . Bounded weak solutions to an elliptic equation with lower order terms and degenerate coercivity. Acta Math Sci, 2019, 39A (3): 529- 534
doi: 10.3969/j.issn.1003-3998.2019.03.012 |
|
23 | Lions J L . Quelques Méthodes de Résolution des Problèmes aux Limites Nonlinéaires. Paris: Dunod Gauthier-Villars, 1969 |
24 | Boccardo L , Murat F , Puel J P . Existence of bounded solutions for nonlinear elliptic unilateral problems. Ann Mat Pura Appl, 1988, 152 (4): 183- 196 |
[1] | 贾哲,杨作东. 带非线性扩散项和信号产生项的趋化-趋触模型解的整体有界性[J]. 数学物理学报, 2021, 41(5): 1382-1395. |
[2] | 陈鹏. 一类反应扩散方程的Nehari-Pankov型基态解[J]. 数学物理学报, 2021, 41(5): 1347-1356. |
[3] | 合敬然,郭合林,王文清. 一类带强制位势的p-Laplace特征值问题[J]. 数学物理学报, 2021, 41(5): 1323-1332. |
[4] | 贾嘉. 二维定常Chaplygin气体绕直楔流动[J]. 数学物理学报, 2021, 41(5): 1270-1282. |
[5] | 蔡晓静, 周艳杰. 带有阻尼项的Boussinesq方程解的大时间性态[J]. 数学物理学报, 2021, 41(5): 1415-1427. |
[6] | 张金国,杨登允. 含Hardy型势的临界Grushin算子方程解的存在性和渐近估计[J]. 数学物理学报, 2021, 41(4): 997-1012. |
[7] | 陈敏风,高宗升,黄志波. |
[8] | 王晶囡,杨德中. 具时滞扩散效应的病原体-免疫模型的稳定性及分支[J]. 数学物理学报, 2021, 41(4): 1204-1217. |
[9] | 李远飞,石金诚,朱慧珊,黄诗淇. 热弹性方程的快速增长或衰减估计[J]. 数学物理学报, 2021, 41(4): 1042-1052. |
[10] | 赵菁蕾,兰家诚,杨姗姗. 带Neumann边界条件的耗散半线性波动方程外问题的生命跨度估计[J]. 数学物理学报, 2021, 41(4): 1033-1041. |
[11] | 谢倩倩,翟小平,董柏青. N维不可压无阻尼Oldroyd-B模型的最优衰减[J]. 数学物理学报, 2021, 41(3): 762-769. |
[12] | 吴斌,陈群. 一类耦合Korteweg-de Vries方程组输运系数反演问题的Lipschitz稳定性[J]. 数学物理学报, 2021, 41(3): 740-761. |
[13] | 钟澎洪,陈兴发. Landau-Lifshitz方程平面波解的全局光滑性[J]. 数学物理学报, 2021, 41(3): 729-739. |
[14] | 贾小尧,娄振洛. Hénon型椭圆系统多个非径向对称解的存在性[J]. 数学物理学报, 2021, 41(3): 723-728. |
[15] | 于洋海,李金禄,吴星. 三维Navier-Stokes-Korteweg方程组的整体大解[J]. 数学物理学报, 2021, 41(3): 629-641. |
|