数学物理学报 ›› 2021, Vol. 41 ›› Issue (5): 1372-1381.
收稿日期:
2021-01-11
出版日期:
2021-10-26
发布日期:
2021-10-08
通讯作者:
欧阳柏平
E-mail:oytengfei79@tom.com;1246683963@qq.com
作者简介:
肖胜中, E-mail: 基金资助:
Baiping Ouyang1,*(),Shengzhong Xiao2()
Received:
2021-01-11
Online:
2021-10-26
Published:
2021-10-08
Contact:
Baiping Ouyang
E-mail:oytengfei79@tom.com;1246683963@qq.com
Supported by:
摘要:
研究了具有非线性记忆项的半线性双波动方程解的全局非存在性.通过建立辅助函数,运用非线性积分不等式相关的迭代方法,得到了解的生命跨度上界估计.
中图分类号:
欧阳柏平,肖胜中. 具有非线性记忆项的半线性双波动方程解的全局非存在性[J]. 数学物理学报, 2021, 41(5): 1372-1381.
Baiping Ouyang,Shengzhong Xiao. Nonexistence of Global Solutions for a Semilinear Double-Wave Equation with a Nonlinear Memory Term[J]. Acta mathematica scientia,Series A, 2021, 41(5): 1372-1381.
1 | Chen W, Palmieri A. Blow-up Result for a Semilinear Wave Equation with a Nonlinear Memory Term//Cicognani M, Santo D, Parmeggiani A, Reissig M. Anomalies in Partial Differential Equations. Switzerland: Springer, 2021: 77-97 |
2 |
John F . Blow-up of solutions of nonlinear wave equations in three space dimensions. Manuscripta Math, 1979, 28, 235- 268
doi: 10.1007/BF01647974 |
3 |
Kato T . Blow-up of solutions of some nonlinear hyperbolic equations. Comm Pure Appl Math, 1980, 33, 501- 505
doi: 10.1002/cpa.3160330403 |
4 |
Strauss W A . Nonlinear scattering theory at low energy. J Functional Analysis, 1981, 41, 110- 133
doi: 10.1016/0022-1236(81)90063-X |
5 |
Glassey R T . Existence in the large for $ \Box u = F(u) $ in two space dimensions. Math Z, 1981, 178, 233- 261
doi: 10.1007/BF01262042 |
6 |
Glassey R T . Finite-time blow-up for solutions of nonlinear wave equations. Math Z, 1981, 177, 323- 340
doi: 10.1007/BF01162066 |
7 |
Sideris T C . Nonexistence of global solutions to semilinear wave equations in high dimensions. J Differential Equations, 1984, 52, 378- 406
doi: 10.1016/0022-0396(84)90169-4 |
8 |
Schaeffer J . The equation $ u_{tt}-\Delta u = |u|.p $ for the critical value of $ p $. Proc Roy Soc Edinburgh Sect A, 1985, 101, 31- 44
doi: 10.1017/S0308210500026135 |
9 |
Chen W . Interplay effects on blow-up of weakly coupled systems for semilinear wave equations with general nonlinear memory terms. Nonlinear Anal, 2021, 202, 112160
doi: 10.1016/j.na.2020.112160 |
10 |
Chen W , Palmieri A . Nonexistence of global solutions for the semilinear Moore-Gibson-Thompson equation in the conservative case. Discrete Contin Dyn Syst, 2020, 40, 5513- 5540
doi: 10.3934/dcds.2020236 |
11 |
Chen W , Reissig M . Blow-up of solutions to Nakao's problem via an iteration argument. J Differential Equations, 2021, 275, 733- 756
doi: 10.1016/j.jde.2020.11.009 |
12 |
Chen W , Palmieri A . A blow-up result for the semilinear Moore-Gibson-Thompson equation with nonlinearity of derivative type in the conservative case. Evol Equa Control Theory, 2020,
doi: 10.3934/eect.2020085 |
13 | Lai N A , Takamura H . Nonexistence of global solutions of nonlinear wave equations with weak time-dependent damping related to Glassey's conjecture. Differ Integral Equa, 2019, 32, 37- 48 |
14 |
Lai N A , Takamura H , Wakasa K . Blow-up for semilinear wave equations with the scale invariant damping and super-Fujita exponent. J Differential Equations, 2017, 263, 5377- 5394
doi: 10.1016/j.jde.2017.06.017 |
15 |
Palmieri A , Takamura A . Blow-up for a weekly coupled system of semilinear damped wave equations in the scattering case with power nonlinearities. Nonlinear Anal, 2019, 187, 467- 492
doi: 10.1016/j.na.2019.06.016 |
16 | Palmieri A, Takamura H. Nonexistence of global solutions for a weakly coupled system of semilinear damped wave equations in the scattering case with mixed nonlinear terms. 2019, arXiv: 1901.04038 |
17 |
Liu Y . Blow-up phenomena for the nonlinear nonlocal porous medium equation under Robin boundary condition. Comput Math Appl, 2013, 66, 2092- 2095
doi: 10.1016/j.camwa.2013.08.024 |
18 |
Li Y , Liu Y , Lin C . Blow-up phenomena for some nonlinear parabolic problems under mixed boundary conditions. Nonlinear Anal-Real, 2010, 11, 3815- 3823
doi: 10.1016/j.nonrwa.2010.02.011 |
19 |
Liu Y , Luo S , Ye Y . Blow-up phenomena for a parabolic problem with a gradient nonlinearity under nonlinear boundary conditions. Comput Math Appl, 2013, 65, 1194- 1199
doi: 10.1016/j.camwa.2013.02.014 |
20 |
Chen W , Liu Y . Lower bound for the blow-up time for some nonlinear parabolic equations. Bound Value Probl, 2016, 2016, 161
doi: 10.1186/s13661-016-0669-5 |
21 |
Fang Z , Wang Y . Blow-up analysis for a semi-linear parabolic equation with time-dependent coefficients under nonlinear boundary flux. Z Angew Math Phys, 2015, 66, 1- 17
doi: 10.1007/s00033-013-0377-2 |
22 |
Tao X , Fang Z . Blow-up phenomena for a nonlinear reaction diffusion system with time dependent coefficients. Comput Math Appl, 2017, 74, 2520- 2528
doi: 10.1016/j.camwa.2017.07.037 |
23 |
Ma L , Fang Z . Blow-up phenomena of solutions for a reaction-diffusion equation with weighted exponential nonlinearity. Comput Math Appl, 2018, 75, 2735- 2745
doi: 10.1016/j.camwa.2018.01.005 |
24 |
Liu Z , Fang Z . Blow-up phenomena for a nonlocal quasilinear parabolic problem equation with time-dependent coefficients under nonlinear boundary flux. Discrete Contin Dyn Syst Ser, 2016, 21, 3619- 3635
doi: 10.3934/dcdsb.2016113 |
25 |
Ma L , Fang Z . Blow-up phenomena for a semilinear parabolic equation with weighted with inner absorption under nonlinear boundary flux. Math Meth Appl Sci, 2017, 40, 115- 128
doi: 10.1002/mma.3971 |
26 | Zheng Y , Fang Z . Blow-up analysis for a weakly coupled reaction-diffusion system with gradient sources terms and time-dependent coefficients(in Chinese). Acta Mathematica Scientia, 2020, 40A (3): 735- 755 |
27 |
Liu Y , Jiang D , Yamamoto M . Inverse source problem for a double hyperbolic equation describing the three-dimensional time cone model. SIAM J Appl Math, 2015, 75, 2610- 2635
doi: 10.1137/15M1018836 |
28 |
D'Abbicco M , Jannelli E . Dissipative higher order hyperbolic equations. Commum Part Diff Equations, 2017, 42, 1682- 1706
doi: 10.1080/03605302.2017.1390674 |
29 |
Chen W , Reissig M . Weakly coupled systems of semilinear elastic waves with different damping mechanisms in 3D. Mathematical Methods in the Applied Sciences, 2019, 42, 667- 709
doi: 10.1002/mma.5370 |
[1] | 合敬然,郭合林,王文清. 一类带强制位势的p-Laplace特征值问题[J]. 数学物理学报, 2021, 41(5): 1323-1332. |
[2] | 杨慧,韩玉柱. 一类抛物型Kirchhoff方程解的爆破性质[J]. 数学物理学报, 2021, 41(5): 1333-1346. |
[3] | 赵菁蕾,兰家诚,杨姗姗. 带Neumann边界条件的耗散半线性波动方程外问题的生命跨度估计[J]. 数学物理学报, 2021, 41(4): 1033-1041. |
[4] | 陈明涛,苏文火,臧爱彬. 带真空无磁扩散不可压磁流体方程柯西问题的局部适定性[J]. 数学物理学报, 2021, 41(1): 100-125. |
[5] | 陈翔英,陈国旺. 源于非线性层晶格模型的一耦合Boussinesq型广义方程组的Cauchy问题[J]. 数学物理学报, 2020, 40(6): 1552-1567. |
[6] | 肖常旺,郭飞. 一类半线性波动方程的适定性[J]. 数学物理学报, 2020, 40(6): 1568-1589. |
[7] | 黄守军,孟希望. 常微分不等式及其在半线性波动方程的应用[J]. 数学物理学报, 2020, 40(5): 1319-1332. |
[8] | 田守富. 一个弱耗散修正的二分量Dullin-Gottwald-Holm系统解的行为研究[J]. 数学物理学报, 2020, 40(5): 1204-1223. |
[9] | 黄守军,王娟. N维外区域中带变系数非线性项的半线性波动方程解的爆破[J]. 数学物理学报, 2020, 40(5): 1259-1268. |
[10] | 韩晓丽. 一类拟线性薛定谔方程的多重扰动问题[J]. 数学物理学报, 2020, 40(4): 869-881. |
[11] | 郑亚东,方钟波. 一类具有时变系数梯度源项的弱耦合反应-扩散方程组解的爆破分析[J]. 数学物理学报, 2020, 40(3): 735-755. |
[12] | 马丹旎,方钟波. 具有耦合指数反应项的变系数扩散方程组解的爆破现象[J]. 数学物理学报, 2019, 39(6): 1456-1475. |
[13] | 蒋红标,汪海航. 半线性波动方程Cauchy问题解的生命跨度估计[J]. 数学物理学报, 2019, 39(5): 1146-1157. |
[14] | 覃思乾,凌征球,周泽文. 一类抛物方程爆破时间下界的确定方法与有效性分析[J]. 数学物理学报, 2019, 39(5): 1033-1040. |
[15] | 李亚峰,辛巧,穆春来. 带有指数型非线性项的离散泊松方程和热方程[J]. 数学物理学报, 2019, 39(4): 773-784. |
|