1 |
Jia Y F , Li Y , Wu J H . Qualitative analysis on positive steady-states for an autocatalytic reaction model in thermodynamics. Discrete and Continuous Dynamical Systems, 2017, 37 (9): 4785- 4813
doi: 10.3934/dcds.2017206
|
2 |
Gaspar V , Beck M T . Depressing the bistable behavior of the iodate-arsenous acid reaction in a continuous flow stirred tank reactor by the effect of chloride or bromide ions: A method for determination of rate constants. Journal of Physical Chemistry, 1986, 90 (23): 6303- 6305
doi: 10.1021/j100281a048
|
3 |
Finlayson A B , Merkin J H . Creation of spatial structure by an electric field applied to an ionic cubic autocatalator system. Journal of Engineering Mathematics, 2000, 38 (3): 279- 296
doi: 10.1023/A:1004799200173
|
4 |
Wei M H , Wu J H , He Y N . Steady-state solutions and stability for a cubic autocatalysis model. Communications on Pure and Applied Analysis, 2015, 14 (3): 1147- 1167
doi: 10.3934/cpaa.2015.14.1147
|
5 |
Guo G H , Li B F , Lin X L . Hopf bifurcation in spatially homogeneous and inhomogeneous autocatalysis models. Computers and Mathematics with Applications, 2014, 67 (1): 151- 163
doi: 10.1016/j.camwa.2013.08.014
|
6 |
Zhou J . Spatiotemporal pattern formation of a diffusive bimolecular model with autocatalysis and saturation law. Computers and Mathematics with Applications, 2013, 66 (10): 2003- 2018
doi: 10.1016/j.camwa.2013.08.022
|
7 |
Shi Q Y , Shi J P , Song Y L . Hopf bifurcation in a reaction-diffusion equation with distributed delay and Dirichlet boundary condition. Journal of Differential Equations, 2017, 263 (10): 6537- 6575
doi: 10.1016/j.jde.2017.07.024
|
8 |
李海银. 密度制约且具有时滞捕食-被捕食模型的Hopf分支. 数学物理学报, 2019, 39A (2): 358- 371
doi: 10.3969/j.issn.1003-3998.2019.02.015
|
|
Li H Y . Hopf bifurcation of delayed density-dependent predator-prey model. Acta Mathematica Scientia, 2019, 39A (2): 358- 371
doi: 10.3969/j.issn.1003-3998.2019.02.015
|
9 |
Yi F Q , Liu J X , Wei J J . Spatiotemporal pattern formation and multiple bifurcations in a diffusive bimolecular model. Nonlinear Analysis: Real World Applications, 2010, 11 (5): 3770- 3781
doi: 10.1016/j.nonrwa.2010.02.007
|
10 |
周军. 一类具有自动催化作用和饱和定律的双分子模型的图灵不稳定性和霍普夫分歧. 数学物理学报, 2017, 37A (2): 366- 373
doi: 10.3969/j.issn.1003-3998.2017.02.015
|
|
Zhou J . Turing instability and Hopf bifurcation of a bimolecular model with autocatalysis and saturation law. Acta Mathematica Scientia, 2017, 37A (2): 366- 373
doi: 10.3969/j.issn.1003-3998.2017.02.015
|
11 |
Wiggins S . Introduction to Applied Nonlinear Dynamical Systems and Chaos. New York: Springer, 1991: 1- 280
|
12 |
Yi F Q , Wei J J , Shi J P . Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system. Journal of Differential Equations, 2009, 246 (5): 1944- 1977
|
13 |
Hassard B D , Kazarinoff N D , Wan Y H . Theory and Application of Hopf bifurcation. Cambridge: Cambridge University Press, 1981
|