数学物理学报 ›› 2021, Vol. 41 ›› Issue (1): 149-165.
收稿日期:
2019-11-19
出版日期:
2021-02-26
发布日期:
2021-01-29
通讯作者:
周先锋
E-mail:zhouxf@ahu.edu.cn
基金资助:
Xuanxuan Xi,Mimi Hou,Xianfeng Zhou*()
Received:
2019-11-19
Online:
2021-02-26
Published:
2021-01-29
Contact:
Xianfeng Zhou
E-mail:zhouxf@ahu.edu.cn
Supported by:
摘要:
该文分析一族含有依赖时间参数t线性算子的时间分数阶非自治发展方程,利用Lions表示定理,得到了弱解适定性的充分条件; 基于正交投影,建立了时间分数阶发展方程弱解的不变性准则.该文所研究方程中的算子是依赖时间的.
中图分类号:
西宣宣,侯咪咪,周先锋. 非自治Caputo分数阶发展方程弱解的适定性与不变集[J]. 数学物理学报, 2021, 41(1): 149-165.
Xuanxuan Xi,Mimi Hou,Xianfeng Zhou. Invariance Sets and Well-Posedness for the Weak Solution of Non-Autonomous Caputo Fractional Evolution Equation[J]. Acta mathematica scientia,Series A, 2021, 41(1): 149-165.
1 | Podlubny I . Fractional Differential Equations. New York: Academic Press, 1993 |
2 | Kilbas A A, Srivastava H M, Trujillo J J. Theory and Applications of Fractional Differential Equations. Amsterdam: Elsevier Science B V, 2006 |
3 | Zhou Y. Basic Theory of Fractional Differential Equations. Singapore: World Scientific, 2014 |
4 |
Elsayed E M , Harikrishnan S , Kanagarajan K . On the existence and stability of boundary value problem for differential equation with Hilfer-Katugampola fractional derivative. Acta Math Sci, 2019, 39: 1568- 1578
doi: 10.1007/s10473-019-0608-5 |
5 |
Migorski S , Zeng S D . Mixed variational inequalities driven by fractional evolutionary equations. Acta Math Sci, 2019, 39: 461- 468
doi: 10.1007/s10473-019-0211-9 |
6 |
Cao J X , Song G J , Wang J , Shi Q , Sun S . Blow-up and global solutions for a class of time fractional nonlinear reaction-diffusion equation with weakly spatial source. Appl Math Lett, 2019, 91: 201- 206
doi: 10.1016/j.aml.2018.12.020 |
7 |
Guo S , Mei L Q , Zhang Z Q , Chen J , He Y , Li Y . Finite difference/Hermite-Galerkin spectral method for multi-dimensional time-fractional nonlinear reaction-diffusion equation in unbounded domains. Appl Math Model, 2019, 70: 246- 263
doi: 10.1016/j.apm.2019.01.018 |
8 |
Taki-Eddine O , Abdelfatah B . A priori estimates for weak solution for a time-fractional nonlinear reaction-diffusion equations with an integral condition. Chaos Soliton Fract, 2017, 103: 79- 89
doi: 10.1016/j.chaos.2017.05.035 |
9 |
Mu J , Ahmad B , Huang S . Existence and regularity of solutions to time-fractional diffusion equations. Comput Math Appl, 2017, 73: 985- 996
doi: 10.1016/j.camwa.2016.04.039 |
10 |
Zhou Y , Shangerganesh L , Manimaran J , Debbouche A . A class of time-fractional reaction-diffusion equation with nonlocal boundary condition. Math Meth Appl Sci, 2018, 41: 2987- 2999
doi: 10.1002/mma.4796 |
11 |
Kubica A , Yamamoto M . Initial-boundary value problems for fractional diffusion equations with time-dependent coefficients. Fract Calc Appl Anal, 2018, 21: 276- 311
doi: 10.1515/fca-2018-0018 |
12 | Dehestani H , Ordokhani Y , Razzaghi M . Fractional-order Legendre-Laguerre functions and their applications in fractional partial differential equations. Appl Math Comput, 2018, 336: 433- 453 |
13 |
Ayouch C , Essoufi E , Tilioua M . Global weak solutions to a spatio-temporal fractional Landau-Lifshitz-Bloch equation. Comput Math Appl, 2019, 77: 1347- 1357
doi: 10.1016/j.camwa.2018.11.016 |
14 | Lions J L . Equations Différentielles Opérationnelles et Problèmes aux Limits. Heidelberg: Springer, 1961 |
15 | Thomaschewski S. Form methods for autonomous and non-autonomous Cauchy problems[D]. Universität Ulm, 2003 |
16 | Fackler S. J.L.Lions' problem concerning maximal regularity of equations governed by non-autonomous forms. Ann I H Poincare-An, 2017, 34: 699-709 |
17 |
Achache M , Ouhabaz E M . Lions' maximal regularity problem with $H^{\frac{1}{2}}$-regularity. J Differential Equations, 2019, 266: 3654- 3678
doi: 10.1016/j.jde.2018.09.015 |
18 |
Arendt W , Dier D . Rection-diffusion systems governed by non-autonomous forms. J Differential Equations, 2018, 264: 6362- 6379
doi: 10.1016/j.jde.2018.01.035 |
19 |
Ouhabaz E M . Invariance of closed convex sets and domination criteria for semigroups. Potential Anal, 1996, 5: 611- 625
doi: 10.1007/BF00275797 |
20 |
Arendt W , Dier D , Ouhabaz E M . Invariance of convex sets for non-autonomous evolution equations governed by forms. J London Math Soc, 2014, 89: 903- 916
doi: 10.1112/jlms/jdt082 |
21 |
Dier D . Non-autonomous forms and invariance. Math Nachr, 2019, 292: 603- 614
doi: 10.1002/mana.201700090 |
22 |
Zhou Y , Peng L . Weak solutions of the time-fractional Navier-Stokes equations and optimal control. Comput Math Appl, 2017, 73: 1016- 1027
doi: 10.1016/j.camwa.2016.07.007 |
23 |
Agrawal O P . Fractional variational calculus in terms of Riesz fractional derivatives. J Phys A, 2007, 40: 6287- 6303
doi: 10.1088/1751-8113/40/24/003 |
24 | Lawrence C E. Partial Differential Equations. Providence, RI: American Mathematical Society, 1997 |
25 | Temam R. Navier Stokes Equations: Theory and Numerical Analysis. Amsterdam: North-Holland, 1977 |
26 |
Liu S , Wu X , Zhou X F , Wei J . Asymptotical stability of Riemann-Liouville fractional nonlinear systems. Nonlinear Dyn, 2016, 86: 65- 71
doi: 10.1007/s11071-016-2872-4 |
27 |
Ye H , Gao J , Ding Y . A generalized Gronwall inequality and its application to a fractional differential equation. J Math Anal Appl, 2007, 328: 1075- 1081
doi: 10.1016/j.jmaa.2006.05.061 |
28 | Hille E, Phillips R S. Functional Analysis and Semi-groups. Providence, RI: American Mathematical Society, 1957 |
29 |
Arendt W , Monniaux S . Maximal regularity for non-autonomous Robin boundary conditions. Math Nachr, 2016, 289: 1325- 1340
doi: 10.1002/mana.201400319 |
[1] | 罗娇,漆前,罗宏. 高阶各向异性Cahn-Hilliard-Navier-Stokes系统的弱解[J]. 数学物理学报, 2020, 40(6): 1599-1611. |
[2] | 佟玉霞,王薪茹,谷建涛. Orlicz空间中A-调和方程很弱解得Lϕ估计[J]. 数学物理学报, 2020, 40(6): 1461-1480. |
[3] | 张雅楠,闫硕,佟玉霞. 自然增长条件下的非齐次A-调和方程弱解的梯度估计[J]. 数学物理学报, 2020, 40(2): 379-394. |
[4] | 张利民,徐海燕,金春花. 具渗流扩散和间接信号产生的Prey-Taxis模型解的整体存在性与稳定性[J]. 数学物理学报, 2019, 39(6): 1381-1404. |
[5] | 李凯,杨晗,王凡. 三维带有衰减项的不可压缩磁流体力学方程组弱解与强解的研究[J]. 数学物理学报, 2019, 39(3): 518-528. |
[6] | 朱波,刘立山. 带瞬时脉冲的分数阶非自制发展方程解的存在唯一性[J]. 数学物理学报, 2019, 39(1): 105-113. |
[7] | 张申贵. 带类p(x)-拉普拉斯算子的双非局部问题的无穷多解[J]. 数学物理学报, 2018, 38(3): 514-526. |
[8] | 邢超, 任猛章, 罗宏. 热盐环流方程全局弱解的存在性[J]. 数学物理学报, 2018, 38(2): 284-290. |
[9] | 蔡钢. Banach空间上有限时滞退化微分方程的适定性[J]. 数学物理学报, 2018, 38(2): 264-275. |
[10] | 杜广伟, 钮鹏程. 非线性次椭圆方程障碍问题很弱解的高阶可积性[J]. 数学物理学报, 2017, 37(1): 122-145. |
[11] | Marko Kostić, 李成刚, 李淼. 抽象多项Riemann-Liouville分数阶微分方程[J]. 数学物理学报, 2016, 36(4): 601-622. |
[12] | 刘健, 连汝续, 钱茂福. 双极Navier-Stokes-Poisson方程整体解的存在性[J]. 数学物理学报, 2014, 34(4): 960-976. |
[13] | 曲风龙, 李希亮. 各向同性的麦克斯韦方程的内部传输问题及反射参数的估计[J]. 数学物理学报, 2013, 33(6): 1178-1188. |
[14] | 朱莉, 夏福全. 广义混合变分不等式的Levitin-Polyak适定性[J]. 数学物理学报, 2012, 32(4): 633-643. |
[15] | 芮杰, 杨孝平. 极小全变分流第一边值问题弱解的存在性[J]. 数学物理学报, 2011, 31(4): 958-969. |
|