数学物理学报 ›› 2021, Vol. 41 ›› Issue (1): 178-193.
收稿日期:
2020-02-29
出版日期:
2021-02-26
发布日期:
2021-01-29
通讯作者:
杜增吉
E-mail:751668254@qq.com; zjdu@jsnu.edu.cn; duzengji@163.com
基金资助:
Tingting Jiang1,2,Zengji Du1,*()
Received:
2020-02-29
Online:
2021-02-26
Published:
2021-01-29
Contact:
Zengji Du
E-mail:751668254@qq.com; zjdu@jsnu.edu.cn; duzengji@163.com
Supported by:
摘要:
该文研究一类带有中立型脉冲时滞和Holling-IV型功能反应函数的捕食-食饵模型.通过运用Mawhin迭合度理论和分析技巧,得到了捕食-食饵模型正周期解存在性的充分条件.
中图分类号:
蒋婷婷,杜增吉. 带有脉冲和Holling-IV型功能反应函数的中立型捕食-食饵模型的周期解[J]. 数学物理学报, 2021, 41(1): 178-193.
Tingting Jiang,Zengji Du. Periodic Solutions of a Neutral Impulsive Predator-Prey Model with Holling-Type IV Functional Response[J]. Acta mathematica scientia,Series A, 2021, 41(1): 178-193.
1 |
邵长旭, 刘树堂. 三种群捕食-食饵模型的分形特征与控制. 数学物理学报, 2019, 39A (4): 951- 962
doi: 10.3969/j.issn.1003-3998.2019.04.022 |
Shao C X , Liu S T . Fractal feature and control of three-species predator-prey model. Acta Math Sci, 2019, 39A (4): 951- 962
doi: 10.3969/j.issn.1003-3998.2019.04.022 |
|
2 |
付盈洁, 蓝桂杰, 张树文, 魏春金. 污染环境下具有脉冲输入的随机捕食-食饵模型的动力学研究. 数学物理学报, 2019, 39A (3): 674- 688
doi: 10.3969/j.issn.1003-3998.2019.03.024 |
Fu Y J , Lan G J , Zhang S W , Wei C J . Dynamics of a stochastic predator-prey model with pulse input in a polluted environment. Acta Math Sci, 2019, 39A (3): 674- 688
doi: 10.3969/j.issn.1003-3998.2019.03.024 |
|
3 |
Sun X L , Yuan R , Wang L . Bifurcations in a diffusive predator-prey model with Beddington-DeAngelis functional response and nonselective harvesting. J Nonlinear Sci, 2019, 29: 287- 318
doi: 10.1007/s00332-018-9487-5 |
4 |
Chen X , Du Z J . Existence of positive periodic Solutions for a neutral delay predator-prey model with Hassell-Varley type functional response and impulse. Qual Theory Dyn Syst, 2018, 17: 67- 80
doi: 10.1007/s12346-017-0223-6 |
5 |
Ma Z P , Huo H F , Xiang H . Hopf bifurcation for a delayed predator-prey diffusion system with Dirichlet boundary condition. Appl Math Comput, 2017, 311: 1- 18
doi: 10.1016/j.cam.2016.06.032 |
6 |
Negreanua M , Tellob J I . Global existence and asymptotic behavior of solutions to a Predator-Prey chemotaxis system with two chemicals. J Math Anal Appl, 2019, 474: 1116- 1131
doi: 10.1016/j.jmaa.2019.02.007 |
7 |
Du Z J , Feng Z S . Existence and asymptotic behavior of traveling waves in a modified vector-disease model. Commun Pure Appl Anal, 2018, 17 (5): 1899- 1920
doi: 10.3934/cpaa.2018090 |
8 | Lu S P , Ge W G . Existence of positive periodic solutions for neutral population model with multiple delays. Appl Math Comput, 2004, 153: 885- 902 |
9 |
Du Z J , Feng Z S , Zhang X N . Traveling wave phenomena of n-dimensional diffusive predator-prey systems. Nonlinear Anal Real World Appl, 2018, 41: 288- 312
doi: 10.1016/j.nonrwa.2017.10.012 |
10 |
Du Z J , Zhang X N , Zhu H P . Dynamics of nonconstant steady states of the Sel'kov model with saturation effect. J Nonlinear Sci, 2020,
doi: 10.1007/s00332-020-09617-w |
11 | Kuang Y . Rich dynamics of Gauss-type ratio-dependent predator-prey systems. Field Inst Commun, 1999, 21: 325- 337 |
12 |
Pao C V . Dynamics of Lotka-Volterra competition reaction-diffusion systems with degenerate diffusion. J Math Anal Appl, 2015, 421: 1721- 1742
doi: 10.1016/j.jmaa.2014.07.070 |
13 | Gokmen E , Isik O R , Sezer M . Taylor collocation approach for delayed Lotka-Volterra predator-prey system. Appl Math Comput, 2015, 268: 671- 684 |
14 | Wang K , Zhu Y L . Global attractivity of positive periodic solution for a Volterra model. Appl Math Comput, 2008, 203: 493- 501 |
15 |
Lv Y S , Du Z J . Existence and global attractivity of positive periodic solution to a Lotka-Volterra model with mutual interference and Holling Ⅲ type functional response. Nonlinear Anal Real World Appl, 2011, 12: 3654- 3664
doi: 10.1016/j.nonrwa.2011.06.022 |
16 | Wang C Y , Li N , Zhou Y Q . On a multi-delay Lotka-Volterra predator-prey model with feedback controls and prey diffusion. Acta Math Sci, 2019, 39B (2): 429- 448 |
17 | Holling C S . The functional response of predator to prey density and its role in mimicry and population regulation. Men Ent Sec Can, 1965, 45: 1- 60 |
18 |
Xia Y H , Cao J D , Cheng S S . Multiple periodic solutions of a delayed stage-structured predator-prey model with non-monotone functional responses. Appl Math Modelling, 2007, 31: 1947- 1959
doi: 10.1016/j.apm.2006.08.012 |
19 | Chen Y M . Multiple periodic solutions of delayed predator-prey systems with type IV functional responses. Nonlinear Anal Real World Appl, 2004, 5: 45- 53 |
20 | Lakshmikantham V , Bainov D D , Simeonov P S . Theory of Impulsive Differential Equations. New Jersey: World Scientific Publishing Co, 1989 |
21 |
Du Z J , Feng Z S . Periodic solutions of a neutral impulsive predator-prey model with Beddington-DeAngelis functional response with delays. J Comput Appl Math, 2014, 258: 87- 98
doi: 10.1016/j.cam.2013.09.008 |
22 |
Xia Y H , Han M A . Multiple periodic solutions of a ratio-dependent predator-prey model. Chaos Sol Fra, 2009, 39: 1100- 1108
doi: 10.1016/j.chaos.2007.04.028 |
23 |
Wang Q , Dai B X , Chen Y M . Multiple periodic solutions of an impulsive predator-prey model with Holling-type IV functional response. Math Comput Modelling, 2009, 49: 1829- 1836
doi: 10.1016/j.mcm.2008.09.008 |
24 | 葛渭高. 非线性常微分方程边值问题. 北京: 科学出版社, 2007 |
Ge W G . Boundary Value Problems for Nonlinear Ordinary Differential Equations. Beijing: Science Press, 2007 | |
25 | Gaines R E , Mawhin J L . Coincidence Degree and Nonlinear Differential Equations. Berlin: Springer-Verlag, 1977 |
[1] | 闫朝琳,高建芳. 混合型脉冲微分方程的数值振动性分析[J]. 数学物理学报, 2020, 40(4): 993-1006. |
[2] | 刘健,张志信,蒋威. 分数阶非线性时滞脉冲微分系统的全局Mittag-Leffler稳定性[J]. 数学物理学报, 2020, 40(4): 1053-1060. |
[3] | 姚旺进. 基于变分方法的脉冲微分方程耦合系统解的存在性和多重性[J]. 数学物理学报, 2020, 40(3): 705-716. |
[4] | 罗李平,罗振国,曾云辉. 一类非线性脉冲中立抛物型分布参数系统的振动条件[J]. 数学物理学报, 2020, 40(3): 784-795. |
[5] | 曹忠威,文香丹,冯微,祖力. 一类具有随机扰动的非自治SIRI流行病模型的动力学行为[J]. 数学物理学报, 2020, 40(1): 221-233. |
[6] | 刘玉记. 含三个Riemann-Liouville分数阶导数的脉冲Langevin型方程的边值问题的可解性[J]. 数学物理学报, 2020, 40(1): 103-131. |
[7] | 朱昆,沈建和. 一类广义Gierer-Meinhardt方程多脉冲同宿解的再研究[J]. 数学物理学报, 2019, 39(6): 1365-1375. |
[8] | 罗艳,谢文哲. 上下解反向的脉冲微分包含解的存在性[J]. 数学物理学报, 2019, 39(5): 1055-1063. |
[9] | 阳超,李润洁. 一类具有不连续捕获的Lasota-Wazewska模型周期解存在性及稳定性分析[J]. 数学物理学报, 2019, 39(4): 785-796. |
[10] | 王超. 一类带有界回复力非线性Hill型方程的周期解[J]. 数学物理学报, 2019, 39(4): 761-772. |
[11] | 童常青,郑静. 半线性Klein-Gordon方程的高频周期解[J]. 数学物理学报, 2019, 39(3): 484-500. |
[12] | 付盈洁,蓝桂杰,张树文,魏春金. 污染环境下具有脉冲输入的随机捕食-食饵模型的动力学研究[J]. 数学物理学报, 2019, 39(3): 674-688. |
[13] | 陈苗苗,裴永珍,梁西银,吕云飞. 害虫治理SI模型的最优脉冲控制策略[J]. 数学物理学报, 2019, 39(3): 689-704. |
[14] | 程志波,毕中华,姚绍文. 一类具有偏差变元的p-Laplacian Liénard型方程在吸引奇性条件下周期解的存在性[J]. 数学物理学报, 2019, 39(2): 277-285. |
[15] | 朱波,刘立山. 带瞬时脉冲的分数阶非自制发展方程解的存在唯一性[J]. 数学物理学报, 2019, 39(1): 105-113. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 144
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 91
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|