数学物理学报 ›› 2020, Vol. 40 ›› Issue (5): 1333-1340.

• 论文 • 上一篇    下一篇

分片光滑边值问题的再生核方法

赵志红*(),林迎珍   

  1. 北京理工大学珠海学院 广东珠海 519088
  • 收稿日期:2018-11-21 出版日期:2020-10-26 发布日期:2020-11-04
  • 通讯作者: 赵志红 E-mail:zhaozh39@163.com
  • 基金资助:
    广东省普通高校青年创新人才项目(2018KQNCX338);广东省普通高校特色创新项目(2019KTSCX217)

Reproducing Kernel Method for Piecewise Smooth Boundary Value Problems

Zhihong Zhao*(),Yingzhen Lin   

  1. School of Science, Zhuhai Campus, Beijing Institute of Technology, Guangdong Zhuhai 519088
  • Received:2018-11-21 Online:2020-10-26 Published:2020-11-04
  • Contact: Zhihong Zhao E-mail:zhaozh39@163.com
  • Supported by:
    the Young Innovative Talents Program in Universities and Colleges of Guangdong Province(2018KQNCX338);the Characteristic Innovative Scientific Research Project of Guangdong Province(2019KTSCX217)

摘要:

一种高效的再生核算法(RKM)被提出用于解决分片光滑边值问题(BVP).通过定义算子LW32[0,1]L2[0,1],应用再生核算法,解决了较为复杂的分片光滑边值问题.对定理的证明保证了算法理论的正确性,进而得到近似解unxOh2收敛于精确解.即:在范数.W32意义下unx有不低于二阶的收敛性.数值算例表明算法正确、简便、有效.

关键词: 再生核方法, 分片光滑, 收敛阶

Abstract:

In this paper, an efficient reproducing kernel method(RKM) is proposed for solving the piecewise smooth BVP. By defining an operator L:W32[0,1]L2[0,1] and applying the reproducing kernel property, we have skillfully solved the complex piecewise smooth BVP. The theorems show the accuracy of the algorithm. Furthermore, we get that the approximate solution un(x) convergence to the exact one with order O(h2). That is, un(x) has second order convergence in the sense of norm .W32. Finally, some numerical experiments are given to illustrate the algorithm is accuracy, simple and efficient.

Key words: Reproducing kernel method, Piecewise smooth, Convergence order

中图分类号: 

  • O241