数学物理学报 ›› 2020, Vol. 40 ›› Issue (5): 1333-1340.

• 论文 • 上一篇    下一篇

分片光滑边值问题的再生核方法

赵志红*(),林迎珍   

  1. 北京理工大学珠海学院 广东珠海 519088
  • 收稿日期:2018-11-21 出版日期:2020-10-26 发布日期:2020-11-04
  • 通讯作者: 赵志红 E-mail:zhaozh39@163.com
  • 基金资助:
    广东省普通高校青年创新人才项目(2018KQNCX338);广东省普通高校特色创新项目(2019KTSCX217)

Reproducing Kernel Method for Piecewise Smooth Boundary Value Problems

Zhihong Zhao*(),Yingzhen Lin   

  1. School of Science, Zhuhai Campus, Beijing Institute of Technology, Guangdong Zhuhai 519088
  • Received:2018-11-21 Online:2020-10-26 Published:2020-11-04
  • Contact: Zhihong Zhao E-mail:zhaozh39@163.com
  • Supported by:
    the Young Innovative Talents Program in Universities and Colleges of Guangdong Province(2018KQNCX338);the Characteristic Innovative Scientific Research Project of Guangdong Province(2019KTSCX217)

摘要:

一种高效的再生核算法(RKM)被提出用于解决分片光滑边值问题(BVP).通过定义算子${\cal L}:{W_{2}^{3}[0, 1]}\rightarrow{L_{2}[0, 1]}$,应用再生核算法,解决了较为复杂的分片光滑边值问题.对定理的证明保证了算法理论的正确性,进而得到近似解$u_{n}(x)$$O(h^2)$收敛于精确解.即:在范数$\left\|\displaystyle.\right\|_{W_2^{3}}$意义下$u_{n}(x)$有不低于二阶的收敛性.数值算例表明算法正确、简便、有效.

关键词: 再生核方法, 分片光滑, 收敛阶

Abstract:

In this paper, an efficient reproducing kernel method(RKM) is proposed for solving the piecewise smooth BVP. By defining an operator $ {\cal L}:{W_{2}^{3}[0, 1]}\rightarrow {L_{2}[0, 1]}$ and applying the reproducing kernel property, we have skillfully solved the complex piecewise smooth BVP. The theorems show the accuracy of the algorithm. Furthermore, we get that the approximate solution $u_{n}(x)$ convergence to the exact one with order $O(h^2)$. That is, $u_{n}(x)$ has second order convergence in the sense of norm $\left\|\displaystyle. \right\|_{W_2^{3}}$. Finally, some numerical experiments are given to illustrate the algorithm is accuracy, simple and efficient.

Key words: Reproducing kernel method, Piecewise smooth, Convergence order

中图分类号: 

  • O241