1 |
Almenar P , J'odar L , Matin J A . Mixed problems for the time-dependent telegraph equation: continuous numerical solutions with a priori error bounds. Math Comput Modelling, 1997, 25, 31- 44
|
2 |
Kato M , Sakuraba M . Global existence and blow-up for semilinear damped wave equations in three space dimensions. Nonlinear Analysis, 2019, 182, 209- 225
|
3 |
Li T T , Zhou Y . Breakdown of solutions to $\Box u+u_t=|u|^{1+\alpha}$. Discrete Contin Dyn Syst, 1995, 1, 503- 520
doi: 10.3934/dcds.1995.1.503
|
4 |
Lai N A , Takamura H , Wakasa K . Blow-up for semilinear wave equations with the scale invariant damping and super-Fujita exponent. J Differential Equations, 2017, 263, 5377- 5394
doi: 10.1016/j.jde.2017.06.017
|
5 |
Ikeda M , Sobajima M . Life-span of solutions to semilinear wave equation with time-dependent critical damping for specially localized initial data. Math Ann, 2018, 372, 1017- 1040
doi: 10.1007/s00208-018-1664-1
|
6 |
Palmieri A , Reissig M . A competition between Fujita and Strauss type exponents for blow-up of semi-linear wave equations with scale-invariant damping and mass. J Differential Equations, 2019, 266, 1176- 1220
doi: 10.1016/j.jde.2018.07.061
|
7 |
D'Abbicco M . The threshold of effective damping for semilinear wave equation. Math Methods Appl Sci, 2015, 38, 1032- 1045
doi: 10.1002/mma.3126
|
8 |
D'Abbicco M , Lucente S . A modified test function method for damped wave equation. Adv Nonlinear Stud, 2013, 13, 863- 889
|
9 |
Zhang Q S . A blow-up result for a nonlinear wave equation with damping: the critical case. C R Acad Sci Paris Ser I Math, 2001, 333, 109- 114
doi: 10.1016/S0764-4442(01)01999-1
|
10 |
Zhou Y . Blow up of solutions to semilinear wave equations with critical exponent in high dimensions. Chin Ann Math Ser B, 2007, 28, 205- 212
doi: 10.1007/s11401-005-0205-x
|
11 |
Lai N A , Zhou Y . The sharp lifespan extimate for semilinear damped wave equation with Fujita critical power in higher dimensions. J Math Pures Appl, 2019, 123, 229- 243
doi: 10.1016/j.matpur.2018.04.009
|
12 |
Yordanov B T , Zhang Q S . Finite time blow up for critical wave equations in high dimensions. Journal of Functional Analysis, 2006, 231, 361- 374
|
13 |
Wirth J . Wave equations with time-dependent dissipation I. Non-effective dissipation. J Differential Equations, 2006, 222, 487- 514
doi: 10.1016/j.jde.2005.07.019
|
14 |
Wirth J . Wave equation with time-dependent dissipation Ⅱ. Effective dissipation. J Differential Equations, 2007, 232, 74- 103
doi: 10.1016/j.jde.2006.06.004
|
15 |
Wakasugi Y. Critical Exponent for the Semilinear Wave Equation with Scale Invariant Damping//Ruzhansky M, Turunen V, et al. Fourier Analysis. Boston: Birkhäuser, 2014: 375-390
|
16 |
Li Y C . Classical solutions for fully nonlinear wave equuations with dissipaction (in Chinese). Chin Ann Math Ser A, 1996, 17, 451- 466
|
17 |
Todorova G , Yordanov B . Critical exponent for a nonlinear wave equation with damping. J Differ Equ, 2001, 174, 464- 489
doi: 10.1006/jdeq.2000.3933
|
18 |
Nishihara K . $L_p$-$L_q$ estimates of solutions to the damped wave quation in 3-dimensional space and their application. Math Z, 2003, 244, 631- 649
doi: 10.1007/s00209-003-0516-0
|
19 |
Takamura H . Improved Kato's lemma on ordinary differential inequality and its application to semilinear wave equations. Nonlinear Analysis, 2015, 125, 227- 240
doi: 10.1016/j.na.2015.05.024
|