1 |
Ablowitz M J , Clarkson P A . Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge: Cambridge University Press, 1991
|
2 |
Maeda M , Sasaki H , Segawa E . Scattering and inverse scattering for nonlinear quantum walks. Discrete Cont Dyn, 2018, 38, 3687- 3703
doi: 10.3934/dcds.2018159
|
3 |
Hirota R . The Direct Method in Soliton. Cambridge: Cambridge University Press, 2004
|
4 |
Rogers C , Schief W K . Backlund and Darboux Transformations, Geometry and Modern Applications in Soliton Theory. Cambridge: Cambridge University Press, 2002
|
5 |
Matveev V B , Salle M A . Darboux Transformations and Solitons. Berlin: Springer, 1991
|
6 |
Geng X G , Ren H F , He G L . Darboux transformation for a generalized Hirota-Satsuma coupled Kortewegde Vries equation. Phys Rev E, 2009, 79, 056602
doi: 10.1103/PhysRevE.79.056602
|
7 |
Xue L L , Liu Q P , Wang D S . A generalized Hirota-Satsuma coupled KdV system:Darboux transformations and reductions. J Math Phys, 2016, 57, 083506
doi: 10.1063/1.4960747
|
8 |
Gordoa P R , Pichering A , Zhu Z N . Backlund transformations for a matrix second Painleve' equation. Phys Lett A, 2010, 374, 3422- 3424
doi: 10.1016/j.physleta.2010.06.034
|
9 |
Gesztesy F , Holden H . Soliton Equations and Their Algebro-Geometric Solutions. Cambridge: Cambridge University Press, 2003
|
10 |
Belokolos E D , Bobenko A I , Enolskii V Z , et al. Algebro-Geometric Approach to Nonlinear Integrable Equations. Berlin: Springer, 1994
|
11 |
He G L , Geng X G , Wu L H . Algebro-geometric quasi-periodic solutions to the three-wave resonant interaction hierarchy. SIAM J Math Analy, 2014, 46, 1348- 1384
doi: 10.1137/130918794
|
12 |
Anton I . Algebraic geometry and stability for integrable systems. Phys D, 2015, 291, 74- 82
doi: 10.1016/j.physd.2014.10.006
|
13 |
Yang X J , Gao F , Srivastava H F . Exact travelling wave solutions for the local fractional two-dimensional Burgers-type equations. Comput Math Appl, 2017, 73, 203- 210
doi: 10.1016/j.camwa.2016.11.012
|
14 |
Fan E G . Extended tanh-function method and its applications to nonlinear equations. Phys Lett A, 2000, 277, 212- 218
doi: 10.1016/S0375-9601(00)00725-8
|
15 |
Wang D S . Integrability of the coupled KdV equations derived from two-layer fluids:Prolongation structures and Miura transformations. Nonlinear Anal, 2010, 73, 270- 281
doi: 10.1016/j.na.2010.03.021
|
16 |
郝晓红, 程智龙. 一类广义浅水波KdV方程的可积性研究. 数学物理学报, 2019, 39A (3): 451- 460
|
|
Hao X H , Cheng Z L . The integrability of the KdV-shallow water wave equation. Acta Math Sci, 2019, 39A, 451- 460
|
17 |
Geng X G , Lv Y Y . Darboux transformation for an integrable generalization of the nonlinear Schrodinger equation. Nonlinear Dyn, 2012, 69, 1621- 1630
doi: 10.1007/s11071-012-0373-7
|
18 |
Geng X G , He G L . Some new integrable nonlinear evolution equations and Darboux transformation. J Math Phys, 2010, 51, 033514
doi: 10.1063/1.3355192
|
19 |
Zhao H Q , Yuan J Y , Zhu Z N . Integrable semi-discrete Kundu-Eckhaus Eequation:Darboux transformation, breather, rogue wave and continuous limit theory. J Nonlinear Sci, 2018, 28, 43- 68
doi: 10.1007/s00332-017-9399-9
|
20 |
Liu L , Wang D S , Han K . An integrable lattice hierarchy for Merola-Ragnisco-Tu Lattice:N-fold Darboux transformation and conservation laws. Commun Nonlinear Sci Numer Simulat, 2018, 63, 57- 71
doi: 10.1016/j.cnsns.2018.03.010
|
21 |
Wang X , Wang L . Darboux transformation and nonautonomous solitons for a modified Kadomtsev-Petviashvili equation with variable coefficients. Comput Math Appl, 2018, 75, 4201- 4213
doi: 10.1016/j.camwa.2018.03.022
|
22 |
Sachs R L . On the integrable variant of the boussinesq system:Painlevé property, rational solutions, a relate many-body system, and equivalence with the AKNS hierarchy. Physica D, 1988, 30, 1- 27
doi: 10.1016/0167-2789(88)90095-4
|
23 |
Whitham G B . Linear and Nonlinear Waves. New York: Wiley, 1974
|