数学物理学报 ›› 2020, Vol. 40 ›› Issue (1): 63-71.
收稿日期:
2019-03-13
出版日期:
2020-02-26
发布日期:
2020-04-08
通讯作者:
韩亚洲
E-mail:yazhou.han@gmail.com
基金资助:
Received:
2019-03-13
Online:
2020-02-26
Published:
2020-04-08
Contact:
Yazhou Han
E-mail:yazhou.han@gmail.com
Supported by:
摘要:
令(Mn,g)为n维无边紧黎曼流形,
的极值问题.首先,利用算子$I_\alpha: L^p(M^n)\rightarrow L^q(M^n)$在次临界情形(即$p>\frac{nq}{n+\alpha q}$)时的紧致性,证明$p>\frac{nq}{n+\alpha q}$时极值函数$f_p\in L^p(M^n)$的存在性;进而证明函数列$\{f_p\}$为临界情形时HLS不等式的最佳常数的极值列;最后,结合极值列$\{f_p\}$在$L^{\frac{nq}{n+\alpha q}}(M^n)$中的一致有界性,利用文献[
中图分类号:
张书陶,韩亚洲. 紧黎曼流形上Hardy-Littlewood-Sobolev不等式的极值问题:次临界逼近法[J]. 数学物理学报, 2020, 40(1): 63-71.
Shutao Zhang,Yazhou Han. Extremal Problems of Hardy-Littlewood-Sobolev Inequalities on Compact Riemannian Manifolds: the Approximation Method from Subcritical to Critical[J]. Acta mathematica scientia,Series A, 2020, 40(1): 63-71.
1 | Brendle S . Global existence and convergence for a higher order flow in conformal geometry. Ann of Math, 2003, 158 (1): 323- 343 |
2 |
Brezis H , Lieb E . A relation between pointwise convergence of functions and convergence of functionals. Proc Amer Math Soc, 1983, 88, 486- 490
doi: 10.1090/S0002-9939-1983-0699419-3 |
3 |
Chang S Y , Gursky M , Yang P C . An equation of Monge-Ampere type in conformal geometry, and four-manifolds of positive Ricci curvature. Ann of Math, 2002, 155 (3): 709- 787
doi: 10.2307/3062131 |
4 | Chen W, Li C. Methods on Nonlinear Elliptic Equations. Missouri: American Institute of Mathematical Sciences, 2010 |
5 |
Djadli Z , Malchiodi A . Existence of conformal metrics with constant Q-curvature. Ann of Math, 2008, 168 (3): 813- 858
doi: 10.4007/annals.2008.168.813 |
6 |
Dou J , Guo Q , Zhu M . Subcritical approach to sharp Hardy-Littlewood-Sobolev type inequalities on the upper half space. Advances in Mathematics, 2017, 312, 1- 45
doi: 10.1016/j.aim.2017.03.007 |
7 | Dou J, Guo Q, Zhu M. Negative power nonlinear integral equations on bounded domains. 2019, arxiv: 1904.03878[math.AP] |
8 |
Dou J , Zhu M . Nonlinear integral equations on bounded domains. J Funct Anal, 2019, 277 (1): 111- 134
doi: 10.1016/j.jfa.2018.05.020 |
9 |
Dou J , Zhu M . Sharp Hardy-Littlewood-Sobolev inequality on the upper half space. Int Math Res Notices, 2015, 2015, 651- 687
doi: 10.1093/imrn/rnt213 |
10 |
Dou J , Zhu M . Reversed Hardy-Littewood-Sobolev inequality. Int Math Res Notices, 2015, 2015, 9696- 9726
doi: 10.1093/imrn/rnu241 |
11 |
Frank R L , Lieb E H . Sharp constants in several inequalities on the Heisenberg group. Annals of Mathematics, 2012, 176, 349- 381
doi: 10.4007/annals.2012.176.1.6 |
12 | González M , Mazzeo R , Sire Y . Singular solutions of fractional order conformal Laplacians. J Geom Anal, 2012, 22 (2): 845- 863 |
13 | González M , Qing J . Fractional conformal Laplacians and fractional Yamabe problems. Analysis & PDE, 2013, 6 (7): 1535- 1576 |
14 | Graham C R , Zworski M . Scattering matrix in conformal geometry. Invent Math, 2013, 152 (1): 89- 118 |
15 | Guan P , Lin C S , Wang G . Application of the method of moving planes to conformally invariant equations. Math Z, 2004, 247 (1): 1- 19 |
16 |
Gursky M , Viaclovsky J . A fully nonlinear equation on four-manifolds with positive scalar curvature. J Differential Geom, 2003, 63 (1): 131- 154
doi: 10.4310/jdg/1080835660 |
17 |
Gursky M , Viaclovsky J . Prescribing symmetric functions of the eigenvalues of the Ricci tensor. Ann of Math, 2007, 166 (2): 475- 531
doi: 10.4007/annals.2007.166.475 |
18 |
Han Y , Zhu M . Hardy-Littlewood-Sobolev inequalities on compact Riemannian manifolds and applications. J Differential Equations, 2016, 260, 1- 25
doi: 10.1016/j.jde.2015.06.032 |
19 |
Hang F , Wang X , Yan X . An integral equation in conformal geometry. Ann Inst H Poincaré Analyse Non Linéaire, 2009, 26, 1- 21
doi: 10.1016/j.anihpc.2007.03.006 |
20 | Hang F , Wang X , Yan X . Sharp integral inequalities for Harmonic functions. Comm Pure Appl Math, 2007, 61 (1): 54- 95 |
21 |
Jin T , Li Y Y , Xiong J . On a fractional Nirenberg problem, part Ⅰ:blow up analysis and compactness of solutions. J Eur Math Soc, 2014, 16, 1111- 1171
doi: 10.4171/JEMS/456 |
22 | Jin T , Li Y Y , Xiong J . On a fractional Nirenberg problem, part Ⅱ:existence of solutions. Int Math Res Notices, 2015, 2015, 1555- 1589 |
23 |
Jin T , Li Y Y , Xiong J . The Nirenberg problem and its generalizations:A unified approach. Math Ann, 2017, 369, 109- 151
doi: 10.1007/s00208-016-1477-z |
24 | Jin T , Xiong J . A fractional Yamabe flow and some applications. J Reine Angew Math, 2014, 696, 187- 223 |
25 |
Lee J M , Parker T H . The Yamabe problem. Bull Amer Math Soc, 1987, 17 (1): 37- 91
doi: 10.1090/S0273-0979-1987-15514-5 |
26 | Lions P L . The concentration-compactness principle in the calculus of variations, the limit case, Part 1. Rev Mat Iberoamericana, 1985, 1 (1): 145- 201 |
27 | Lions P L . The concentration-compactness principle in the calculus of variations, the limit case, Part 2. Rev Mat Iberoamericana, 1985, 1 (2): 45- 121 |
28 |
Li A , Li Y Y . On some conformally invariant fully nonlinear equations Ⅱ:Liouville, Harnack and Yamabe. Acta Math, 2005, 195, 117- 154
doi: 10.1007/BF02588052 |
29 |
Lieb E . Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities. Ann of Math, 1983, 118, 349- 374
doi: 10.2307/2007032 |
30 |
Ngô Q A , Nguyen V H . Sharp reversed Hardy-Littlewood-Sobolev inequality on Rn. Israel Journal of Mathematics, 2017, 220, 189- 223
doi: 10.1007/s11856-017-1515-x |
31 | Ngô Q A , Nguyen V H . Sharp reversed Hardy-Littlewood-Sobolev inequality on the half space R+n. International Mathematics Research Notices, 2017, 2017, 6187- 6230 |
32 | Zhang S, Han Y. Extremal problem of Hardy-Littlewood-Sobolev inequalities on compact Riemanniannian manifolds. 2019, arXiv: 1901.02309[math. AP] |
33 | Zhu M . Prescribing integral curvature equation. Differential and Integral Equations, 2016, 29 (9/10): 889- 904 |
[1] | 胡凤,张瑞凤. 量子色动力学中Schwinger-Dyson方程解的适定性[J]. 数学物理学报, 2020, 40(1): 234-242. |
[2] | 魏含玉,夏铁成,胡贝贝,张燕. 一个新的可积广义超孤子族及其自相容源、守恒律[J]. 数学物理学报, 2020, 40(1): 187-199. |
[3] | 吴千秋,胡良根. 加权的退化椭圆系统稳定解的Liouville定理[J]. 数学物理学报, 2020, 40(1): 156-168. |
[4] | 张庆玲,巴英. 带群集耗散项的零压流方程的扰动黎曼问题[J]. 数学物理学报, 2020, 40(1): 49-62. |
[5] | 潘丽君,韩欣利,李彤. 色谱方程的广义黎曼问题:含有Delta激波[J]. 数学物理学报, 2019, 39(6): 1300-1313. |
[6] | 马丹旎,方钟波. 具有耦合指数反应项的变系数扩散方程组解的爆破现象[J]. 数学物理学报, 2019, 39(6): 1456-1475. |
[7] | 林俊宇,万明练,曹木花. 三维Landau-Lifshitz-Gilbert方程的解的衰减估计[J]. 数学物理学报, 2019, 39(6): 1443-1455. |
[8] | 吴志刚,缪小芳. 带粘性的波动方程组解的逐点估计[J]. 数学物理学报, 2019, 39(6): 1421-1442. |
[9] | 张俊杰,郑神州,于海燕. 具有部分BMO系数的非散度型抛物方程的Lorentz估计[J]. 数学物理学报, 2019, 39(6): 1405-1420. |
[10] | 李容星,王文清,曾小雨. 带椭球势阱的Kirchhoff型方程的变分问题[J]. 数学物理学报, 2019, 39(6): 1323-1333. |
[11] | 张瑞凤,刘男. 非线性光学晶格中的梯度流方法[J]. 数学物理学报, 2019, 39(5): 1170-1182. |
[12] | 张秋月. 带有分数阶耗散的三维广义Oldroyd-B模型的整体正则性[J]. 数学物理学报, 2019, 39(5): 1125-1135. |
[13] | 王娟,赵杰. Neumann边值齐次化问题:W1, p强收敛估计[J]. 数学物理学报, 2019, 39(5): 1115-1124. |
[14] | 吴杰,林红霞. 关于抛物-抛物Keller-Segel类模型的全局解和渐近性[J]. 数学物理学报, 2019, 39(5): 1102-1114. |
[15] | 梅艳芳,王友军. 一类非线性Schrödinger方程三种类型的解[J]. 数学物理学报, 2019, 39(5): 1087-1093. |
|