数学物理学报 ›› 2020, Vol. 40 ›› Issue (1): 63-71.

• 论文 • 上一篇    下一篇

紧黎曼流形上Hardy-Littlewood-Sobolev不等式的极值问题:次临界逼近法

张书陶,韩亚洲*()   

  1. 中国计量学院数学系 杭州 310018
  • 收稿日期:2019-03-13 出版日期:2020-02-26 发布日期:2020-04-08
  • 通讯作者: 韩亚洲 E-mail:yazhou.han@gmail.com
  • 基金资助:
    国家自然科学基金(11201443);浙江省自然科学基金(LY18A010013)

Extremal Problems of Hardy-Littlewood-Sobolev Inequalities on Compact Riemannian Manifolds: the Approximation Method from Subcritical to Critical

Shutao Zhang,Yazhou Han*()   

  1. Department of Mathematics, College of Science, China Jiliang University, Hangzhou 310018
  • Received:2019-03-13 Online:2020-02-26 Published:2020-04-08
  • Contact: Yazhou Han E-mail:yazhou.han@gmail.com
  • Supported by:
    国家自然科学基金(11201443);浙江省自然科学基金(LY18A010013)

摘要:

令(Mng)为n维无边紧黎曼流形, 0<α<n, q>nnα,该文研究了下列Hardy-Littlewood-Sobolev(HLS)不等式

的极值问题.首先,利用算子Iα:Lp(Mn)Lq(Mn)在次临界情形(即p>nqn+αq)时的紧致性,证明p>nqn+αq时极值函数fpLp(Mn)的存在性;进而证明函数列{fp}为临界情形时HLS不等式的最佳常数的极值列;最后,结合极值列{fp}Lnqn+αq(Mn)中的一致有界性,利用文献[32]建立的集中列紧原理证明{fp}Lnqn+αq(Mn)中存在收敛子列,从而给出临界情形(即p=nqn+αq)时极值函数的存在性.

关键词: Hardy-Littlewood-Sobolev不等式, 紧黎曼流形, 极值问题

Abstract:

Let (Mn,g) be a n-dimensional compact Riemannian manifolds, 0<α<n and q>nnα. This paper is mainly devoted to study the extremal problems of the following HLS inequalities:

Firstly, we prove that Iα:Lp(Mn)Lq(Mn) with p>nqn+αq is compact and then get the existence of extremal functions fp,p>nqn+αq. Secondly, we find that the function sequence {fp} is a maximizing sequence for the sharp constant of HLS inequality with p=nqn+αq. Finally, by the Concentration-Compactness principle established in [32], we can prove that there exists a convergence subsequence of {fp} and then give the existence of extremal function for critical case.

Key words: Hardy-Littlewood-Sobolev intqualities, Compact Riemannian manifolds, Extremal problems

中图分类号: 

  • O175.2