1 |
Bouchut F. On Zero-pressure Gas Dynamics//Perthame B, et al. Advances in Kinetic Theory and Computing: Adv Math Appl Sci. Sinapore: World Scientific, 1994: 171-190
|
2 |
Brenier Y , Gangbo W , Savare G , Westdickenberg M . The sticky particles dynamicse with interactions. J Math Pures Appl, 2013, 99, 577- 617
|
3 |
Danilvo V G , Shelkovich V M . Dynamics of propagation and interaction of δ-shock waves in conservation law system. J Differential Equations, 2005, 221, 333- 381
|
4 |
Danilvo V G , Shelkovich V M . Delta-shock waves type solution of hyperbolic systems of conservation laws. Q Appl Math, 2005, 63, 401- 427
|
5 |
Ding Y , Huang F M . On a nonhomogeneous system of pressureless flow. Quart Appl Math, 2002, 62 (3): 509- 528
|
6 |
E W , Rykov Yu G , Sinai Ya G . Generalized varinational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics. Comm Math Phys, 1996, 177, 349- 380
|
7 |
Guo L , Li T , Pan L , Han X . The Riemann with delta inital data for the one-dimensional Chaplygin gas equations with a source term. Nonlinear Anal:Real Word Appl, 2018, 41, 588- 606
|
8 |
Ha S Y , Huang F , Wang Y . A global unique solvability of entropic weak solution to the one-dimensional pressureless Euler system with a flocking dissipation. J Differential Equations, 2014, 2257, 1333- 1371
|
9 |
Ha S Y , Liu J G . A simple proof of the cucker-smale flocking dynamics and mean-field limit. Commun Math Sci, 2009, 7 (2): 297- 325
|
10 |
Huang F , Wang Z . Well posedness for pressureless flow. Comm Math Phys, 2001, 222, 117- 146
|
11 |
Jin C Y . Well posedness for pressureless Euler system with a flocking dissipation in Wasserstein space. Nonlinear Anal TMA, 2015, 128, 412- 422
|
12 |
Jin C Y . Existence and uniqueness of entropy solution to pressureless Euler system with a flocking dissipation. Acta Mathematica Scientia, 2016, 36B (5): 1262- 1284
|
13 |
Kalisch H , Mitrovic D . Singular solutions of a fully nonlinear 2×2 system of conservation laws. Proceedings of the Edinburgh Mathematical Society, 2012, 55, 711- 729
|
14 |
Kalisch H , Mitrovic D . Singular solutions for shallow water equations. IMA J Appl Math, 2012, 77, 340- 350
|
15 |
Li J, Zhang T, Yang S. The Two-dimensional Riemann Prolem in Gas Dynamics. Pitman Monogr Surv Pure Appl Math. Harlow: Longman Scientific and Technical, 1998
|
16 |
Nedeljkov M , Oberguggenberger M . Interactions of delta shock waves in a strictly hyperbolic system of conservation laws. J Math Anal Appl, 2008, 344, 1143- 1157
|
17 |
Shen C . The Riemann problem for the pressureless Euler system with the Coulomb-like friction term. IAM J Appl Math, 2016, 81, 76- 99
|
18 |
Shen C . The Riemann problem for the Chaplygin gas equations with a source term. Z Angew Math Mech, 1999, 96, 681- 695
|
19 |
Shen C , Sun M . Interactions of delta shocks for transport equations with split delta functions. J Math Anal Appl, 2009, 351, 747- 755
|
20 |
Sheng W, Zhang T. The Riemann Problem for Transportation Equations in Gas Dynamics. Providence, RI: Mem Amer Math Soc, 1999
|
21 |
Sun M . The exact Riemann solutions to the generalized Chaplygin gas equations with friction. Commun Nonlinear Sci Numer Simulat, 2016, 36, 342- 353
|
22 |
Wang L . The Riemann problem with delta data for zero-pressure gas dynamcis. Chinese Annals of Mathematics, 2016, 37 (3): 441- 450
|
23 |
Wang Z , Ding X . Uniqueness of generalized solution for the Cauchy problem of transportation equations. Acta Math Scientia, 1997, 17 (3): 341- 352
|
24 |
Wang Z , Huang F , Ding X . On the Cauchy problem of transportation equations. Acta Math Appl Sinica, 1997, 13 (2): 113- 122
|
25 |
Wang Z , Zhang Q . The Riemann problem with delta initial data for the one-dimensional Chaplygin gas equations. Acta Mathematica Scientia, 2012, 32B (3): 825- 841
|
26 |
Yang H . Generalized plane delta-shock waves for n-dimensional zero-pressure gas dynamics. J Math Anal Appl, 2001, 260, 18- 35
|
27 |
Yang H , Sun W . The Riemann problem with delta initial data for a class of coupled hyperbolic system of conservation laws. Nonlinear Anal, 2007, 67, 3041- 3049
|