[1] Li T Y, Yorke J A. Period three implies chaos. Amer Math Monthly, 1975, 82(10):985-992 [2] Oprocha P. Relations between distributional and Devaney chaos. Chaos, 2006, 16:033112 [3] Huang W, Ye X D. Devaney chaos or 2-scattering implies Li-Yorke chaos. Topo Appl, 2002, 117(3):259-272 [4] Devaney R L. An Introduction to Chaotic Dynamical Systems (2nd ed). Redwood City, CA:AddisonWesley Publishing Company, 1989 [5] Snoha L. Dense chaos. Comment Math Univ Carolin, 1992, 33(4):747-752 [6] Li S H. ω-Chaos and topological entropy. Trans Amer Math Soc, 1993, 399(1):243-249 [7] Schweizer B, Smítal J. Measures of chaos and a spectral decomposition of dynamical systems on the interval. Trans Amer Math Soc, 1994, 344:737-754 [8] Akin E, Kolyada S. Li-Yorke sensitivity. Nonlinearity, 2003, 16:1421-1433 [9] Wang L. D, Huang G F, Huan S M. Distributional chaos in sequence. Nonlinear Anal, 2007, 67(7):2131-2136 [10] Oprocha P, Wilczyński P. Shift spaces and distributional chaos. Chaos Solitons and Fractals, 2007, 31(2):347-355 [11] Bermúdez T, Bonilla A, Martínez-Giménez F, Peris A. Li-Yorke and distributionally chaotic operators. J Math Anal Appl, 2011, 373:83-93 [12] Bayart F, Grivaux S. Frequently hypercyclic operators. Trans Amer Math Soc, 2006, 358:5083-5117 [13] Bès J, Peris A. Hereditarily hypercyclic operators. J Funct Anal, 1999, 167:94-112 [14] Bès J, Peris A. Disjointness in hypercyclicity. J Math Anal Appl, 2007, 336:297-315 [15] Chan K C, Shapiro J H. The cyclic behavior of translation operators on Hilbert spaces of entire functions. Indiana Univ Math J, 1991, 40:1421-1449 [16] Fu X C, You Y C. Chaotic sets of shift and weighted shift maps. Nonlin Anal, 2009, 71:2141-2152 [17] Grosse-Erdmann K G. Hypercyclic and chaotic weighted shifts. Studia Math, 2000, 139:47-68 [18] Grosse-Erdmann K G, Peris A. Frequently dense orbits. C R Math Acad Sci Paris, 2005, 341:123-128 [19] Martínez-Giménez F, Peris A. Chaos for backward shift operators. Int J Bifurcation and Chaos, 2002, 12:1703-1715 [20] Martínez-Giménez F. Chaos for power series of backward shift operators. Proc Amer Math Soc, 2007, 135:1741-1752 [21] Salas H N. Hypercyclic weighted shifts. Trans Amer Math Soc, 1995, 347:993-1004 [22] Wu X X, Zhu P Y. The principal measure of a quantum harmonic oscillator. J Phys A:Math Theor, 2011, 44:505101 [23] Wu X X, Zhu P Y. On the equivalence of four chaotic operators. Appl Math Lett, 2012, 25:545-549 [24] 吴新星, 王建军. 关于P-极小动力系统的一些注记. 数学物理学报, 2016, 36A(5):879-885 Wu X X, Wang J J. Some remarks on P -minimal dynamical systems. Acta Math Scientia, 2016, 36A(5):879-885 [25] 吴新星. 关于弱specification性质的一个注记. 数学物理学报,2017, 37A(4):601-606 Wu X X. A remark on the weak specification property. Acta Math Scientia, 2017, 37A(4):601-606 [26] Wu X X, Zhu P Y. Chaos in a class of nonconstant weighted shift operation. Int J Bifurcation and Chaos, 2013, 23(1):1350010 [27] Wu X X, Zhu P Y, Lu T X. Uniform distributional chaos for weighted shift operators. Applied Mathematics Letters, 2013, 26:130-133 [28] 卢天秀, 朱培勇, 吴新星.∑(X)上移位算子的一致分布混沌和准测度. 应用数学学报, 2015, 38A(1):1-7 Lu T X, Zhu P Y, Wu X X. Principal measure and uniform distributional chaos of weighted shift operators on ∑(X). Acta Math Appl Sinica, 2015, 38A(1):1-7 [29] Wu X X, Chen G R, Zhu P Y. Invariance of chaos from backward shift on the Köthe sequence space. Nonlinearity, 2014, 27:271-288 [30] Wu X X, Wang L D, Chen G R. Weighted backward shift operators with invariant distributionally scrambled subsets. Ann Funct Anal, 2017, 8:199-210 [31] Wu X X, Chen G R. On the invariance of maximal distributional chaos under an annihilation operator. Applied Mathematics Letters, 2013, 26:1134-1140 [32] Wu X X, Zhu P Y. Invariant scrambled sets and maximal distributional chaos. Annales Polonici Mathematici, 2013, 109(3):271-278 [33] Liao G F, Fan Q J. Minimal subshifts which display Schweizer-Smital chaos and have zero topological entropy. Science in China, 1998, 41:33-38 |