[1] Ammari K, Tucsnak M. Stabilization of Bernoulli-Euler beams by means of a pointwise feedback force. SIAM J Cont Optim, 2000, 39(4):1160-1181 [2] Liu K S, Liu Z Y. Boundary stabilization of a nonhomogeneous beam with rotatory inertia at the tip. Journal of Computational and Applied Mathematics, 2000, 114:1-10 [3] Liu K S, Liu Z Y, Rao B P. Exponential stability of an abstract non-dissipative linear system. SIAM J Cont Optim, 2001, 40(1):149-165 [4] 章春国, 赵宏亮, 刘康生. 具有局部分布反馈与边界反馈耦合控制的非均质Timoshenko梁的指数镇定. 数学年刊(A辑),2003, 24(6):757-764 Zhang C G, Zhao H L, Liu K S. The exponential stabilization of nonhomogeneous Timoshenko beam with one locally distributed control and one boundary control. Chinese Ann Math Ser A, 2003, 24(6):757-764 [5] Zhang C G. Boundary feedback stabilization of the undamped Timoshenko beam with both ends free. J Math Anal Appl, 2007, 326:488-499 [6] Zhang C G, Hu H X. Exact controllability of a Timoshenko beam with dynamical boundary. J Math Kyoto Univ, 2007, 47(3):643-655 [7] Sadek I S, Kucuk I I, Sloss J M, Zeini E E, Adali S. Optimal boundary control of dynamics responses of piezo actuating micro-beams. Applied Mathematical Modelling, 2009, 33(8):3343-3353 [8] Ozkan Ozer A, Scott W H. Exact controllability of a Rayleigh beam with a single boundary control. Math Control Signals Syst, 2011, 23:199-222 [9] 章春国. 具有局部记忆阻尼的非均质Timoshenko梁的稳定性. 数学物理学报,2012, 32A(1):186-200 Zhang C G. Stability for the nonhomogeneous Timoshenko beam with local memory damping. Acta Math Sci, 2012, 32A(1):186-200 [10] Sadek I S, Sloss J M, Bruch J C J, Adali S. Optimal control of a Timoshenko beam by distributed force. J Optim Theory Appl, 1986, 50(3):451-461 [11] Zelikin M I, Manita L A. Optimal control for a Timoshenko beam. C R Mecanique, 2006, 334:292-297 [12] Zhang C G, He Z R. Optimality conditions for a Timoshenko beam equation with periodic constraint. Z Angew Math Phys, 2014, 65(2):315-324 [13] Adams R A. Sobolev Spaces. New York:Acadamic Press, 1975 [14] Pazy A. Semigroups of Linear Operators and Applications to Partical Differential Euqations. New York:Springer-Verlag, 1983 [15] Liu K S. Locally distributed control and damping for the conservative systems. SIAM J Cont Optim, 1997, 35(5):1574-1590 |