[1] Chen H H. The Schwarz-Pick lemma for planar harmonic mappings. Science China Mathematics, 2011, 54(6):1101-1118 [2] Dai S Y, Pan Y F. A note on Schwarz-Pick lemma for bounded complex-valued harmonic functions in the unit ball of Rn. Chinese Annals of Mathematics, 2015, 36B(1):67-80 [3] Ahlfors L V. Conformal Invariants:Topics in Geometric Function. New York:McGraw-Hill, 1973 [4] Heinz E. On one-to-one harmonic mappings. Pacific J Math, 1959, 9(1):101-105 [5] Hamada H, Kohr G. Pluriharmonic mappings in Cn and complex Banach spaces. Journal of Mathematical Analysis and Applications, 2015, 246:635-658 [6] Chen H, Gauthier P. The Landau theorem and Bloch theorem for planar harmonic and pluriharmonic mappings. Proc Amer Math Soc, 2011, 139:385-595 [7] Clonna F. The Bloch constant of bounded harmonic mappings. Indiana Univ Math J, 1989, 38:829-840 [8] Chen S, Rasila A. Schwarz-Pick type estimates of pluriharmonic mappings in the unit polydisk. 2014, arXiv:1409.7897 [9] Li L, Li H Y, Zhao D. A Schwarz-Pick lemma for the modulus of holomorphic mappings from Bnp to Bnp. Complex Variables and Elliptic Equations, 2017, 62(12):1746-1757 [10] Zhao D, Han J M, Zhang H Y. Peak function and support support surface of a general Kohn-Nirenberg domain in Cn. Complex Variables and Elliptic Equations, 2013, 58(5):635-646 [11] Han J M, Zhao D, Zhang S G. Peak function and support support surface of a Kohn-Nirenberg domain. Journal of Mathematical Analysis and Applications, 2013, 365(1):410-414 |