[1] Saltelli A, Tarantola S, Campolongo F, et al. Sensitivity Analysis in Practice:A Guide to Assessing Scientific Models. New York:John Wiley & Sons, 2004 [2] Saltelli A, Ratto M, Andres T, et al. Global Sensitivity Analysis. New York:John Wiley & Sons, 2008 [3] Morris M D. Factorial sampling plans for preliminary computational experiments. Technometrics, 1991, 33(2):161-174 [4] Cukier R I, Fortuin C M, Shuler K E, et al. Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I Theory. The Journal of Chemical Physics, 1973, 59(8):3873-3878 [5] Beven K, Binley A. The future of distributed models:Model calibration and uncertainty prediction. Hydrological Processes, 1992, 6(3):279-298 [6] Sobol I M. Sensitivity analysis for non-linear mathematical models. Mathematical Modeling and Computational Experiment, 1993, 1:407-414 [7] Saltelli A, Tarantola S, Chan K P S. Quantitative model-independent method for global sensitivity analysis of model output. Technometrics, 1999, 41(1):39-56 [8] Kroese D P, Brereton T, Taimre T, et al. Why the Monte Carlo method is so important today. Wiley Interdisciplinary Reviews:Computational Statistics, 2014, 6(6):386-392 [9] Halton J H. Algorithm 247:Radical-inverse quasi-random point sequence. Commun ACM, 1964, 7(12):701-702 [10] Sobol I M. Quasi-Monte Carlo methods. Progress in Nuclear Energy, 1990, 24(1):55-61 [11] Caflisch R E. Monte Carlo and quasi-Monte Carlo methods. Acta Numerica, 1998, 7:1-49 [12] Warnock T T. Computational investigations of low-discrepancy point-sets. Appl Numb Theo Numer Anal, 1972, 106(4):319-343 [13] Mckay M D, Beckman R J, Conover W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 2000, 42(1):55-61 [14] Wu Q L, Cournéde P H, Mathieu A. An efficient computational method for global sensitivity analysis and its application to tree growth modelling. Reliability Engineering & System Safety, 2012, 107:35-43 [15] Chan A, Saltelli K, Scott E M. Sensitivity Analysis:Gauging the Worth of Scientifilc Models. New York:John Wiley & Sons, 2000 [16] Archer G E B, Saltelli A, Sobol I M. Sensitivity measures,anova-like techniques and the use of bootstrap. Journal of Statistical Computation and Simulation, 1997, 58(2):99-120 |