数学物理学报 ›› 2018, Vol. 38 ›› Issue (2): 372-384.

• 论文 • 上一篇    下一篇

不同抽样算法对Sobol敏感性分析影响的研究

刘欢1,2, 吴琼莉2, Cournède Paul-Henry3   

  1. 1. 中国科学院大学 北京 100049;
    2. 中国科学院武汉物理与数学研究所 武汉 430071;
    3. Cenctrale Supélec, Grande Voie des Vignes, 92295, Châtenay-Malabry, France
  • 收稿日期:2017-03-08 修回日期:2017-07-12 出版日期:2018-04-26 发布日期:2018-04-26
  • 通讯作者: 吴琼莉 E-mail:wuqiongli@wipm.ac.cn
  • 作者简介:刘欢,E-mail:632750038@qq.com
  • 基金资助:
    国家自然科学基金(31600290)和武汉市科技计划项目(2016020101010094)

Research on the Effects of Different Sampling Algorithm on Sobol Sensitivity Analysis

Liu Huan1,2, Wu Qiongli2, Cournède Paul-Henry3   

  1. 1. University of Chinese Academy of Sciences, Beijing 100049;
    2. Wuhan institute of Physics and Mathematics, CAS, Wuhan 430071;
    3. Cenctrale Supélec, Grande Voie des Vignes, 92295, Châtenay-Malabry, France
  • Received:2017-03-08 Revised:2017-07-12 Online:2018-04-26 Published:2018-04-26
  • Supported by:
    Supported by the NSFC (31600290) and the Wuhan Science and Technology Foundation (2016020101010094)

摘要: 敏感性分析Sobol方法是其十分重要的一个分支.Sobol方法的数值解产生主要依赖蒙特卡洛方法.随机数的产生是蒙特卡洛方法的基础.随机数的生成最为主要的一类方法是伪随机数生成器,但由于伪随机数生成器所产生的随机数的均匀性不够好,因此会影响抽样质量,从而影响所计算的敏感性系数的收敛性与准确性.该文使用准随机和拉丁超立方体随机抽样器替代蒙特卡洛方法中的伪随机抽样器,并比较它们的抽样结果,以及最终所得的敏感性系数准确性及收敛性,最后发现准随机抽样相较另外两种抽样方式有明显优势.

关键词: 蒙特卡洛方法, 伪随机抽样, 准随机抽样, 拉丁超立方体抽样, 敏感性系数

Abstract: The Sobol method is one of the most important branch of sensitivity analysis. The produces of numerical solution of Sobol method mainly depend on the Monte Carlo method. While the generation of random numbers is the basis of Monte Carlo method. Pseudo random number generator is the most simple and basal method to generate random numbers. However, the uniformity of random numbers generated by pseudo random number generator is not very good. Thereby, the sample quality will be effected, and will affect the convergence and accuracy of sensitivity analysis indices calculated from the samples. In this paper, quasi random sampler and Latin hypercube sampler are used to substitute the pseudo sampler, then compare the samples get from them, and the accuracy and convergence of sensitivity analysis indices. Finally, the paper finds that quasi random sampling has obvious advantages compared with other two samplers.

Key words: Monte Carlo method, Pseudo random sampler, Quasi random sampler, Latin hypercube sampler, Sensitivity analysis indices

中图分类号: 

  • O213