[1] Friswell M I, Mottershead J E. Finite Element Model Updating in Structural Dynamics. Dordrecht:Kluwer Academic Publishers, 1995 [2] Baruch M. Optimization procedure to correct stiffness and flexibility matrices using vibration tests. AIAA Journal, 1978, 16:1208-1210 [3] Baruch M, Bar-Itzhack I Y. Optimal weighted orthogonalization of measured modes. AIAA Journal, 1978, 16:346-351 [4] Berman A, Nagy E J. Improvement of a large analytical model using test data. AIAA Journal, 1983, 21:1168-1173 [5] Wei F S. Structural dynamic model improvement using vibration test data. AIAA Journal, 1990, 28:175-177 [6] Wei F S. Mass and stiffness interaction effects in analytical model modification. AIAA Journal, 1990, 28:1686-1688 [7] Dai H. Optimal approximation of real symmetric matrix pencil under spectral restriction. Numer Math J Chin Univ, 1990, 12:177-187 [8] Carvalho J, Datta B N, Gupta A, Lagadapati M. A direct method for model updating with incomplete measured data and without spurious modes. Mechanical Systems and Signal Processing, 2007, 21:2715-2731 [9] Mao X B, Dai H. A quadratic inverse eigenvalue problem in damped structural model updating. Applied Mathematical Modelling, 2016, 40:6412-6423 [10] Yuan Y, Dai H. On a class of inverse quadratic eigenvalue problem. Journal of Computational and Applied Mathematics, 2011, 235:2662-2669 [11] Bai Z J, Chu D, Sun D. A dual optimization approach to inverse quadratic eigenvalue problems with partial eigenstructure. SIAM Journal on Scientific Computing, 2007, 29:2531-2561 [12] Kuo Y C, Lin W W, Xu S F. New model updating method for quadratic eigenvalue problems using a symmetric eigenstructure assignment. AIAA Journal, 2005, 43:2593-2598 [13] Carvalho J B, Datta B N, Lin W W, Wang C S. Symmetry preserving eigenvalue embedding in finite-element model updating of vibrating structures. Journal of Sound and Vibration, 2006, 290:839-864 [14] Saad Y. Projection and deflation method for partial pole assignment in linear state feedback. IEEE Trans Automatic Control, 1988, 33:290-297 [15] Xu S F, Qian J. Orthogonal basis selection method for robust partial eigenvalue assignment problem in second-order control systems. Journal of Sound and Vibration, 2008, 317:1-19 [16] Cai Y F, Qian J, Xu S F. Robust partial pole assignment problem for high order control systems. Automatica, 2012, 48:1462-1466 [17] Cai Y F, Xu S F. A new eigenvalue embedding approach for finite element model updating. Taiwanese Journal of Mathematics, 2010, 14:911-932 [18] Brahma S, Datta B. An optimization approach for minimum norm and robust partial quadratic eigenvalue assignment problems for vibrating structures. Journal of Sound and Vibration, 2009, 324:471-489 [19] Datta B N, Lin W W, Wang J N. Robust partial pole assignment for vibrating systems with aerodynamic effects. IEEE Trans Automatic Control, 2006, 51:1979-1984 [20] Datta B N. Finite element model updating, eigenstructure assignment and eigenvalue embedding for vibrating structures. Mechanical Systems and Signal Processing, 2002, 16:83-96 [21] Bai Z J, Datta B N, Wang J. Robust and minimum norm partial quadratic eigenvalue assignment in vibrating systems:A new optimization approach. Mechanical Systems and Signal Processing, 2010, 24:766-783 [22] Cai Y F, Qian J, Xu S F. The formulation and numerical method for partial quadratic eigenvalue assignment problems. Numer Linear Algebra Appl, 2011, 18:637-652 [23] Zhang J F, Ouyang H, Yang J. Partial eigenstructure assignment for undamped vibration systems using acceleration and displacement feedback. Journal of Sound and Vibration, 2014, 333:1-12 [24] Yuan Y X, Zhao W H, Liu H. Analytical dynamic model modification using acceleration and displacement feedback. Applied Mathematical Modelling, 2016, 40:9584-9593 [25] Lancaster P, Tismenetsky M. The Theory of Matrices. London:Academic Press, 1985 [26] Aubin J P. Applied Functional Analysis. New York:John Wiley & Sons, 1979 [27] Ben-Israel A, Greville T N E. Generalized Inverses. Theory and Applications. New York:Springer, 2003 [28] Mitra S K. A pair of simultaneous linear matrix equations A1XB1=C1, A2XB2=C2 and a matrix programming problem. Linear Algebra and Its Applications, 1990, 131:107-123 |