[1] Pekar S. Untersucheng über die Elektronentheorie der Kristalle. Berlin:Akademie Verlag, 1954 [2] Alexandrov A S, Devreese J T. Advances in Polaron Physics. Berlin:Springer, 2010 [3] Lieb E H. Existence and uniqueness of the minimizing solution of choquards nonlinear equation. Stud Appl Math, 1976/1977, 57:93-105 [4] Lions P L. Solutions of Hartree-Fock equations for colomb system. Comm Math Phys, 1987, 109:33-97 [5] Alves C, Yang M. Existence of semiclassical ground state solutions for a generalized Choquard equation. J Diff Eq, 2014, 257:4133-4164 [6] D'Avenia P, Siciliano G, Squassina M. On fractional Choquard equation. Math Models and Methods in Appl Sciences, 2015, 25:1447-1476 [7] Cingolani S, Clapp M, Secchi S. Multiple solutions to magnetic nonlinear Choquard equation. Z Angew Math Phys, 2012, 63:233-248 [8] Ma L, Zhao L. Classification of positive solitary solutions of the nonlinear Choquard equation. Arch Ration Mech Anal, 2010, 195:455-467 [9] Melgaard M, Zongo F. Multiple solutions of the quasirelativistic Choquard equation. J Math Phys, 2012, 53:033709 [10] Moroz V, Schaftingen Van. Semi-classical states for the Choquard equation. Calc Var Partial Differential Equations, 2015, 52:199-235 [11] Wei J, Winter M. Strongly interacting bumps for the Schrödinger-Newton equations. J Math Phys, 2009, 50:012905 [12] Zhang Z, Tassilo K, Hu A, Xia H. Existence of a nontrivial solution for Choquard's equation. Acta Mathematica Scientia, 2006, 26B(3):460-468 [13] Sun X, Zhang Y. Multi-peak solution for nonlinear magnetic Choquard type equation. J Math Phys, 2014, 55(3):1731-1769 [14] 曹道珉.广义Choquard-Pekar方程非平凡解的存在性. 数学物理学报,1989, 9A(1):101-112Cao D M. The existence of nontrivial solution to the generalized Choquard-Pekar equation. Acta Mathematica Scientia, 1989, 9A(1):101-112 [15] Stein E M, Weiss G. Fractional integrals in n-dimensional Euclidean spaces. J Math Mech, 1958, 7(4):503-514 [16] Chen W, Jin C, Li C, Lim J. Weighted Hardy-Littlewood-Sobolev inequalities and systems of integral equations. Discrete and Continuous Dynamical Systems, 2005, Supplement Volume:164-172 [17] Lions P L. The concentration-compactness principle in the calculus of variation. The locally compact case. Part I. Ann Inst H Poincaré Anal Non Linéaire, 1984, 1:109-145 [18] Lions P L. The concentration-compactness principle in the calculus of variation. The locally compact case. Part Ⅱ. Ann Inst H Poincaré Anal Non Linéaire, 1984, 1:223-283 |