[1] Lizama C, Ponce R. Periodic solutions of degenerate differential equations in vector-valued function spaces. Studia Math, 2011, 202(1):49-63 [2] Lizama C, Ponce R. Maximal regularity for degenerate differential equations with infinite delay in periodic vector-valued function spaces. Proc Edinb Math Soc, 2013, 56:853-871 [3] Bu S. Well-posedness of second order degenerate differential equations in vector-valued function spaces. Studia Math, 2013, 214(1):1-16 [4] Bu S. Lp-maximal regularity of degenerate delay equations with periodic conditions. Banach J Math Anal, 2014, 8(2):49-59 [5] Cai G, Bu S. Periodic solutions of third-order degenerate differential equations in vector-valued functional spaces. Israel J Math, 2016, 212:163-188 [6] Arendt W, Bu S. The operator-valued Marcinkiewicz multiplier theorem and maximal regularity. Math Z, 2002, 240:311-343 [7] Arendt W, Bu S. Operator-valued Fourier multipliers on periodic Besov spaces and applications. Proc Edinb Math Soc, 2004, 47:15-33 [8] Bu S, Kim J. Operator-valued Fourier multipliers on periodic Triebel spaces. Acta Math Sin (Engl Ser), 2005, 21(5):1049-1056 [9] Favini A, Yagi A. Degenerate Differential Equations in Banach Spaces. New York:CRC Press, 1998 [10] Sviridyuk G, Fedorov V. Linear Type Equations and Degenerate Semigroups of Operators (Inverseans Ill-posed Probelms). Utrecht:De Gruyter, 2003 [11] Keyantuo V, Lizama C. Periodic solutions of second order differential equations in Banach spaces. Math Z, 2006, 253:489-514 [12] 蔡钢. Banach 空间中二阶退化微分方程的周期解.中国科学:数学, 2015, 45:381-392 Cai G. Periodic solution of second order degenerate differential equation in Banach spaces (in Chinese). Sci Sin Math, 2015, 45:381-392 [13] Chao J A, Woyczynski W A. Probability Theory and Harmonic Analysis. New York:Marcel Dekker Inc, 1986 |