数学物理学报 ›› 2018, Vol. 38 ›› Issue (2): 264-275.

• 论文 • 上一篇    下一篇

Banach空间上有限时滞退化微分方程的适定性

蔡钢   

  1. 重庆师范大学数学科学学院 重庆 401331
  • 收稿日期:2017-03-08 修回日期:2017-07-09 出版日期:2018-04-26 发布日期:2018-04-26
  • 作者简介:蔡钢,E-mail:caigang-aaaa@163.com
  • 基金资助:
    国家自然科学基金(11401063,11771063)、重庆市自然科学基金(cstc2017jcyjAX0006)、重庆市教委项目(KJ1703041)、重庆市高等学校青年骨干教师资助计划(020603011714)和重庆师范大学青年拔尖人才计划(02030307-00024)

The Well-Posedness of Degenerate Differential Equations with Finite Delay in Banach Spaces

Cai Gang   

  1. School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331
  • Received:2017-03-08 Revised:2017-07-09 Online:2018-04-26 Published:2018-04-26
  • Supported by:
    Supported by the NSFC (11401063, 11771063), the Natural Science Foundation of Chongqing (cstc2017jcyjAX0006), the Science and Technology Project of Chongqing Education Committee (KJ1703041), the University Young Core Teacher Foundation of Chongqing (020603011714) and Talent Project of Chongqing Normal University (02030307-00024)

摘要: 该文在Lebesgue-Bochner空间Lp(T,X)和周期Besov空间Bp,qs(T,X)上研究二阶有限时滞退化微分方程:(Mu')'(t)=Aut)+Bu'(t)+Fut+ft)(t ∈ T:=[0,2π]),u(0)=u(2π),(Mu')(0)=(Mu')(2π)的适定性.利用向量值函数空间上的算子值傅里叶乘子定理,文中给出上述方程具有适定性的充要条件.

关键词: Lebesgue-Bochner空间, Besov空间, 傅里叶乘子, 适定性

Abstract: In this paper, we study the well-posedness of the second order degenerate differential equation:(Mu')'(t)=Au(t) + Bu'(t) + Fut + f(t) (t ∈ T:=[0, 2π]) with periodic boundary conditions u(0)=u(2π),(Mu')(0)=(Mu')(2π), in Lebesgue-Bochner spaces Lp(T, X) and periodic Besov spaces Bp,qs(T, X). Using operator-valued Fourier multipliers theorems in vector-valued function spaces, we give necessary and sufficient conditions for the well-posedness of above equation.

Key words: Lebesgue-Bochner spaces, Besov spaces, Fourier multipliers, Well-posedness

中图分类号: 

  • O177