数学物理学报 ›› 2018, Vol. 38 ›› Issue (2): 284-290.

• 论文 • 上一篇    下一篇

热盐环流方程全局弱解的存在性

邢超1, 任猛章2, 罗宏1   

  1. 1. 四川师范大学数学与软件科学学院 成都 610066;
    2. 四川民族学院数学系 四川康定 626001
  • 收稿日期:2016-11-23 修回日期:2017-05-14 出版日期:2018-04-26 发布日期:2018-04-26
  • 通讯作者: 罗宏 E-mail:lhscnu@163.com
  • 作者简介:邢超,E-mail:562596013@qq.com;任猛章,E-mail:renmengzhang123@163.com
  • 基金资助:
    国家自然科学基金(11711306)、四川省科技基金(2015YJ0125)和四川师范大学优秀学位论文培育基金(201609002)

The Existence of Global Weak Solutions to Thermohaline Circulation Equations

Xing Chao1, Ren Mengzhang2, Luo Hong1   

  1. 1. College of Mathematics and Software Science, Sichuan Normal University, Chengdu 610066;
    2. Mathematic Department, Sichuan Minzu College, Sichuan Kangding 626001
  • Received:2016-11-23 Revised:2017-05-14 Online:2018-04-26 Published:2018-04-26
  • Supported by:
    Sponsored by the NSFC (11711306), the SCNSF (2015YJ0125) and the BTF Sichuan Normal University (201609002)

摘要: 该文利用T-弱连续算子理论和空间序列方法证明了热盐环流方程全局弱解的存在性.首先根据热盐环流方程的形式选择试探函数空间和解函数空间,再将方程化为抽象的算子方程,验证算子是T-弱连续的并满足对应条件,从而得到热盐环流方程全局弱解的存在性.

关键词: 全局弱解, 热盐环流方程, 存在性

Abstract: In the article, the existence of global weak solutions to thermohaline circulation equations is proved by the theory of T-weakly continuous operator and the method of space sequence. Firstly, the space of test function and space of solution function are chosen according to thermohaline circulation equations. Then the equations can be rewritten as abstract operator equation. Furthermore, it is proved that the operator is T-weakly continuous and satisfies corresponding conditions. Thus the existence of global weak solutions to thermohaline circulation equations is obtained.

Key words: Global weak solutions, Thermohaline circulation equations, Existence

中图分类号: 

  • O175