数学物理学报 ›› 2017, Vol. 37 ›› Issue (3): 510-518.

• 论文 • 上一篇    下一篇

一类约束变分问题极小元的存在性及其集中行为

谷龙江1, 孙志禹1, 曾小雨2   

  1. 1. 中国科学院武汉物理与数学研究所 武汉 430071;
    2. 武汉理工大学理学院 武汉 430070
  • 收稿日期:2016-10-17 修回日期:2017-03-21 出版日期:2017-06-26 发布日期:2017-06-26
  • 通讯作者: 曾小雨,E-mail:zengxy09@126.com E-mail:zengxy09@126.com
  • 作者简介:谷龙江,E-mail:gulongjiang0@163.com;孙志禹,E-mail:onlyamoment@126.com
  • 基金资助:
    国家自然科学基金(11471331,11501555)和中央高校基本科研业务费专项基金(WUT:2017IVA076)

The Existence of Minimizers for a Class of Constrained Variational Problem with Its Concentration Behavior

Gu Longjiang1, Sun Zhiyu1, Zeng Xiaoyu2   

  1. 1. Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071;
    2 School of Sciences, Wuhan University of Technology, Wuhan 430070
  • Received:2016-10-17 Revised:2017-03-21 Online:2017-06-26 Published:2017-06-26
  • Supported by:
    Supported by the NSFC(11471331, 11501555) and the Fundamental Research Funds for the Central University (WUT:2017IVA076)

摘要: 该文主要讨论了一类带有调和位势p-Laplacian方程特征值问题对应的变分泛函极小元的存在性与非存在性,并且使用能量估计的方法分析了当方程中相关参数逼近其临界值时极小元的集中行为.

关键词: 约束变分, p-Laplacian方程, 极小化问题, 集中行为

Abstract: In this paper, we mainly discuss the existence and non-existence of minimizers for the variational functional of a p-Laplacian eigenvalue problem involving harmonic potential. Moreover, the concentration behavior of the minimizers is also investigated by using the energy method when the related parameter closes to a critical value.

Key words: Constrained variation, p-Laplacian equation, Minimizing problem, Concentration behavior

中图分类号: 

  • O175.25