数学物理学报 ›› 2017, Vol. 37 ›› Issue (3): 499-509.

• 论文 • 上一篇    下一篇

关于k-Hessian方程C2+α局部解的存在性

巴娜1, 田范基2, 郑列1   

  1. 1. 湖北工业大学理学院 武汉 430068;
    2. 湖北大学数学与统计学学院, 应用数学湖北省重点实验室 武汉 430062
  • 收稿日期:2016-12-14 修回日期:2017-02-21 出版日期:2017-06-26 发布日期:2017-06-26
  • 通讯作者: 巴娜,E-mail:bana1002@126.com E-mail:bana1002@126.com
  • 基金资助:
    湖北省教育厅科研项目(Q20151401)和国家人社部国家留学人员科技活动择优资助项目(鄂人函[2013]277号)

C2+α Local Solvability of the k-Hessian Equations

Ba Na1, Tian Fanji2, Zheng Lie1   

  1. 1. School of Science, Hubei University of Technology, Wuhan 430068;
    2 Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics, Hubei University, Wuhan 430062
  • Received:2016-12-14 Revised:2017-02-21 Online:2017-06-26 Published:2017-06-26
  • Supported by:
    Supported by the Scientific Research Project of Education Department of Hubei Province (Q20151401) and the Scientific and Technological Activities of Overseas Students of the Ministry of Human Resources and Social Security (Hubei Letter[2013]277)

摘要: 该文克服椭圆型k-Hessian算子的线性化算子不满足极大值原理的困难,利用Nash-Moser迭代,证明当非齐次项fCα变号或非负时,k-Hessian方程C2+α局部解的存在性,当然当fC时,存在C局部解.其技巧是首先证明线性化方程解的唯一性,以此为基础得到线性化方程解的存在性,进而得到线性化方程解的高阶正则性和先验估计.

关键词: k-Hessian方程, 局部解, Nash-Moser迭代

Abstract: Overcoming the difficulty arising from the fact that the linearized operators of the elliptic k-Hessian ones do not satisfy the Maximum principle and employing Nash-Moser iteration, we prove the existence of C2+α local solutions of k-Hessian equation when the nonhomogeneous term fCα changes sign or is nonnegative. Of course there exists C local solution if fC. The technique is that, for the solution to the linearized equation, we prefer at first to prove its uniqueness from which the existence of solution, together with the higher regularity and a priori estimates of solutions, follows.

Key words: k-Hessian equations, Local solution, Nash-Moser iteration

中图分类号: 

  • O175.25