数学物理学报 ›› 2017, Vol. 37 ›› Issue (3): 519-527.

• 论文 • 上一篇    下一篇

一类分形方块的拓扑豪斯道夫维数

代玉霞, 柯枫, 李青   

  1. 湖北大学数学与统计学院, 应用数学湖北省重点实验室 武汉 430062
  • 收稿日期:2016-12-11 修回日期:2017-03-17 出版日期:2017-06-26 发布日期:2017-06-26
  • 作者简介:代玉霞,E-mail:daiyuxia8173@163.com
  • 基金资助:

    国家自然科学基金(11301162)

The Topological Hausdorff Dimension of a Class of Fractal Squares

Dai Yuxia, Ke Feng, Li Qing   

  1. Faculty of Mathematics and Statistics, Hubei Key Laboratory of Applied Mathematics, Hubei University, Wuhan 430062
  • Received:2016-12-11 Revised:2017-03-17 Online:2017-06-26 Published:2017-06-26
  • Supported by:

    Supported by the NSFC (11301162)

摘要:

拓扑豪斯道夫维数是最近由Balka,Buczolich和Elekes在文献[1]中提出的一种新维数,它的值介于拓扑维数和豪斯道夫维数之间.设n ≥ 2,记D=d1d2,…dm⊆{0,1,…,n-12}为一个数字集,分形方块F是满足集方程F=1/nF+D)的集合,该文主要讨论了在n=3,m ≤ 5情形下F的拓扑豪斯道夫维数.

关键词: 分形方块, 拓扑基, 拓扑豪斯道夫维数

Abstract:

Balka, Buczolich, Elekes introduced a new concept of dimension for metric space, the so called topological Hausdorff dimension in[1]. The value of the topological Hausdorff dimension is always between the topological dimension and Husdorff dimension. Let n ≥ 2, D=d1,d2,…dm⊆0,1,…,n-12 be a digit set. The set F satisfying the set equation F=1/n(F+D) is called a fractal square. In this paper, we mainly discuss the Topological Hausdorff Dimension of F in the case n=3, m ≤ 5.

Key words: Fractal square, Topological basis, Topological Hausdorff Dimension

中图分类号: 

  • O211