[1] Zadeh L A. Fuzzy sets. Information and Control, 1965, 8: 338--353
[2] Zadeh L A. The concept of linguistic variable and its application to approximate reasoning I II and III. Information Sciences, 1975, 8: 199--249
[3] Zadeh L A. Probability measure of fuzzy events. Journal of Mathematical Analysis and Applications, 1968, 3: 421--427
[4] Yuji Yoshida. The valuation of European options in uncertain environment. EUR J OPER RES, 2003, 145: 221--229
[5] Yoshida, Yasuda, Nakagami. A new evaluation of mean value for fuzzy numbers and its application to American put option under uncertainty. Fuzzy Sets Syst, 2006, 157: 2614--2626
[6] Wu Hsien-Chung. Pricing European options based on the fuzzy pattern of Black-Scholes formula. C\&OR, 2004, 31: 1069--1081
[7] Wu, Hsien-Chung. European option pricing under fuzzy environments. Int J Intell Syst, 2005, 20: 89--102
[8] Wu Hsien-Chung. Using fuzzy sets theory and Black-Scholes formula to generate pricing boundaries of European options. Appl Math Comput, 2007, 185: 136--146
[9] Thiagarajah. Option valuation model with adaptive fuzzy numbers. Comput Math Appl, 2007, 53: 831--841
[10] 蹇明, 边潇男.模糊环境下带交易费用的权证定价模型.数学物理学报, 2010, 30A: 1254--1262
[11] Xu Weindong. A jump-diffusion model for option pricing under fuzzy environments. Insurance: Mathematics and Economics, 2009, 44: 337--344
[12] Piotr Nowak, Maciej Romaniuk. Computing option pricing for Levy process with fuzzy parameters. Eur J OPER RES, 2010, 201: 206--210
[13] 姜礼尚.金融衍生产品定价的数学模型与案例分析.北京: 高等教育出版社,2008: 28--41
[14] Mocioalca O. Jump diffusion options with transaction costs. Rev Roum Math Pure Appl, 2007, 52: 349--366
[15] 李安贵.模糊数学及其应用(第2版).北京:冶金工业出版社, 2005
[16] Zadeh L A. The concept of linguistic variable and its application to approximate reasoning I II and III. Inform Sci, 1975, 8: 199--249
[17] Fuller R, Majlender P. On weighted possibilistic mean and variance of fuzzy numbers. Fuzzy Set Syst, 2003, 136: 363--374 |