[1] Daubechies I. Ten Lecture on Wavelets. CBMS Lecture notes 61, Philadelphia: SIAM, 1992
[2] Hern{\'a}ndes E, Weiss G. A First Course on Wavelets. Boca Raton: CRC Press, 1996
[3] Meyer Y. Wavelets and Operators. Cambridge Studies in Advanced Mathematics 37. Cambridge: Cambridge University Press, 1992
[4] Manos Papadakis, Hrvojesikic, Guido Weiss. The characterization of low pass filters and some basic properties of wavelets, scaling functions and related concepts. J Fourier Anal Appl, 1983, 5: 495--521
[5] Li Z. Characterization and connectivity of generalized filters in L2(Bbb Rd). Acta Appl Math, 1992, 107: 223--236
[6] Li Z, Dai X, Diao Y, Huang W. The path-connectivity of MRA wavelets in L2(Bbb Rd). Illinois J Math, 2010, 54(2): 601--620
[7] Li Z, Dai X, Diao Y, Xin J. Multipliers, phases and connectivity of wavelets in L2(Bbb R2). J Fourier Anal Appl, 2010, 16: 155--176
[8] Li Z, Shi X. Dyadic bivariate wavelet multipliers in L2(Bbb R2). Acta Mathematica Sinica, 2011, 27: 500--512
[9] Han B. Symmetric multivariate othogonal refinable functions. Appl Comput Harmon Anal, 2004, 17: 277--292
[10] B. Han. Dual multiwavelet frames with high balancing order and compact fast frame transform. Appl Comput Harmon Anal, 2009, 26(1): 14--42
[11] Kwon S. Characterization of orthonormal high-order balanced multiwavelets in terms of moments. Bull Korean Math Soc, 2009, 46(1): 183--198
[12] Li S, Liu Z. Riesz multiwavelet bases generated by vector refinement equation. Sci China (A), 2009, 52(3): 468--480
[13] Li Z, Dai X, Diao Y. Intrinsic s-elementary Parseval frame multiwavelets in L2(Bbb Rd). J Math Anal Appl, 2010, 367: 677--684
[14] Bownik M. A characterization of affine dual frames in L2(Bbb Rn). Appl Comput Harmon Anal, 2000, 8: 203--221
[15] Chui C K. An Introduction to Wavelets. New York: Academic Press, 1992
[16] Damir Bakic, Ilya Krishtal, Wilson Edward N. Parseval frame wavelets with En(2)-dialtions. Appl Comput Harmon Anal, 2005, 19: 386--431
[17] Gu Q, Han D. On multiresolution analysis (MRA) wavelets in Bbb Rn. J Fourier Anal Appl, 2000, 6(4): 437--447
[18] Gr{\"o}chenig K, Madych W R. Multiresolution analysis, Haar bases, and self-similar tilings of Bbb Rn. IEEE Trans Inf Th, 1992, 38(2): 556--568 |