[1] Kadison R. A generalized Schwarz inequality and algebraic invariants for operator algebras. Ann Math, 1952, 56(2): 494--503
[2] Bhatia R. Positive Definite Matrices. Princeton: Princeton University Press, 2007
[3] Bourin J C, Ricard E. An asymmetric Kadison's inequality. Linear Algebra and Its Applications, 2010, 433: 499--510
[4] Furuta T. Around choi inequalities for positive linear maps. Linear Algebra and Its Applications, 2011, 434: 14--17
[5] Yuan Jiangtao, Ji Guoxing. Extensions of Kadison's inequality on positive linear maps. Linear Algebra and Its Applications, 2012, 436: 747--752
[6] Furuta T. A≥B≥0 assures (BrApBr)1/q≥Bp+2r/q for r≥0, p≥0, q ≥1 with (1+2r)q≥p+2r. Proc Amer Math Soc, 1987, 101: 85--88
[7] Choi M D. A Schwarz inequality for positive linear maps on C*-algebras. Illinois J Math, 1974, 18: 565--574
[8] Hansen F, Pedersen G K. Jensen's operator inequality. Bull London Math Soc, 2003, 35: 553--564
[9] Halmos P R. A Hilbert Space Problem Book. New York Inc: Springer-Verlag, 1982 |