[1] Everitt W N. Integrable-square solution of ordinary differential equations (III). Quart J Math, 1963, 14(2): 170--180
[2] Everitt W N, Zettl A. Generalized symmetric ordinary differential expressions I: the general theory. Nieuw Archief voor Wiskunde, 1979, 27(3): 363--397
[3] Cao Zhijiang. On self-adjoint domains of 2nd order differential operators in limit-cirle case. Acta Math Sinica, New Series, 1985, 1(3): 175--180
[4] Krall A M. Hilbert Spaces, Boundary Value Problems and Orthogonal Polynomials. Basel, Boston, Berlin: Birkhauser-Verlag, 2002
[5] Naimark M A. Linear Differential Operators. New York: Ungar, 1968
[6] Shi Yuming. On the rank of the matrix radius of the limiting set for a singular linear Hamiltonian system. Linear
ALgebra and its Applications, 2004, 376: 109--123
[7] Sun Jiong, Wang Aiping, Anton Zettl. Continuous spectrum and square-integrable solutions of differential operators with intermediate deficiency index. Journal of Functional Analysis, 2008, 255: 3229--3248
[8] Sun Jiong. On the self-adjoint extensions of symmetric ordinary differential operators with middle deficiency indices.
Acta Math Sinica, New Series, 1986, 2(2): 152--167
[9] Sun Huaqing, Shi Yuming. Self-adjoint extensions for singular linear Hamiltonian systems. Math Nachr, 2011, 284(5-6): 797--814
[10] Weidmann J. Linear Operators in Hilbert Spaces. Berlin, New York: Springer-Verlag, 1980
[11] Zheng Zhaowen, Chen Shaozhu. GKN theory for linear Hamiltonian systems. Applied Mathematics and Computation, 2006, 182: 1514--1527
[12] 曹之江. 常微分算子. 上海: 上海科学技术出版社, 1986
[13] 曹之江. 高阶极限圆型微分算子的自伴扩张. 数学学报, 1985, 28(2): 205--217
[14] 魏广生. 对称算子自伴域的一种新描述. 内蒙古大学学报, 1996, 27(3): 305--130
[15] 魏广生, 徐宗本. 亏指数为可数无穷的对称微分算子的自伴扩张. 数学进展, 2000, 29(3): 227--234 |