数学物理学报 ›› 2014, Vol. 34 ›› Issue (1): 171-178.

• 论文 • 上一篇    下一篇

复微分算子下调和映照的单叶半径

朱剑峰|黄心中   

  1. 华侨大学数学科学学院 福建 泉州 362021
  • 收稿日期:2012-06-10 修回日期:2013-05-15 出版日期:2014-02-25 发布日期:2014-02-25
  • 基金资助:

    华侨大学侨办基金资助项目(10QZR22)和国家自然科学基金项目(11101165)资助.

The Univalent Radius of Harmonic Mappings Under Complex-Operator

 ZHU Jian-Feng, HUANG Xin-Zhong   

  1. School of Mathematical Sciences, Huaqiao University, Fujian Quanzhou 362021
  • Received:2012-06-10 Revised:2013-05-15 Online:2014-02-25 Published:2014-02-25
  • Supported by:

    华侨大学侨办基金资助项目(10QZR22)和国家自然科学基金项目(11101165)资助.

摘要:

f(z)为定义在单位圆盘D上的调和映照, 定义复微分算子L:=z∂/∂z-z∂/∂z. 该文在f满足系数条件(1.7)下, 得到L(f)的单叶半径ρ0如(1.9)式. 进而当f为调和K -拟共形映照时, 得到L(f)的单叶半径ρK.

关键词: 调和映照, 拟共形映照, Bloch常数, Landau定理,  复微分算子

Abstract:

Assume f(z) is a harmonic mapping defined in the unit disk D, denote complex-operator L:=z∂/∂z-z∂/∂z. In this paper, assume f satisfys coefficient condition (1.7), we obtained the univalent radius ρ0 of L(f). Here ρ0 is defined by (1.9). Moreover, if f is a harmonic K-quasiconformal mapping, we also obtained the univalent radium ρK of L(f).

Key words: Harmonic mapping, quasiconformal mapping, Bloch constant, Landau theorem, Complex-operator

中图分类号: 

  • 30C75