[1] Chou K S, Qu C. Integrable equations arising from motions of plane curves. Physica D, 2002, 162: 9--33
[2] Doliwa A, Santini P. An elementary geometric characterisation of the integrable motions of a curve. Phys Lett A, 1994, 185: 373--384
[3] Goldstein R E, Petrich D M. The Korteweg-de Vries hierarchy as dynamics of closed curves in the plane. Phys Rev Lett, 1991, 67: 3203--3206
[4] Hasimoto H. A soliton on a vortex filement. J Fluid Mech, 1972, 51: 477--485
[5] Kambe T, Tako T. Motion of distorted vortex rings. J Phys Soc Japan, 1971, 31: 591--599
[6] Laksmanan M, Ruijgrok T W, Thompson C J. On the dynamics of a continuum spin system. Physica A, 1976, 84: 577--590
[7] Lamb G L. B\"{a}cklund transformations for certain nonlinear evolution equations. J Math Phys, 1974, 15: 2157--2165
[8] Lamb G L. Solitons on moving space curves. J Math Phys, 1977, 18: 1654--1661
[9] Nakayama K, Segur H, Wadati M. Integrability and the motion of curves. Phys Rev Lett, 1992, 69: 2603--2606
[10] Nakayama K, Wadati M. Motion of curves in the plane. J Phys Soc Japan, 1993, 62: 473--479
[11] Rogers C, Schief W K. B\"{a}cklund and Darboux Transformations. Geometry and Modern Applications in Soliton Theory. Cambridge: Cambridge University Press, 2002
[12] Rogers C, Schief W K. Binormal motion of curves of constant curvature a torsion. Generation of soliton surface. Proc R Soc London A, 1999, 455: 3163--3188
[13] Sym A. Soliton Surfaces and Their Applications//Martini R, ed. Geometric Aspects of the Einstein Equations and Integrable Systems. Berlin: Springer, 1985 |