[1] Van den Berg J B. The phase-plane picture for a class of fourth-order conservative differential equations. J Diff Eqns, 2000, 161: 10--153
[2] Van den Berg J B, Hulshof J, Vandervorst R C. Travelling waves for fourth-order parabolic equations. SIAM J Math Anal, 2001, 32: 1342--1374
[3] Champneys A R. Homoclinic orbits in reversible systems and their applications in mechanics, fluids and optics. Phys D, 1998, 112: 158--186
[4] Champneys A R. Homoclinic orbits in reversible systems II: Multi-bumps and saddle-centres. CWI Quart, 1999, 12: 185--212
[5] Cross M C, Hohenberg P C. Pattern formation outside of equilibrium. Rev Mod Phys, 1993, 65: 851--1112
[6] Dee G T, Van Saarloos W. Bistable systems with propagating fronts leading to pattern formation. Phys Rev Lett, 1988, 60: 2641--2644
[7] Deng S, Sun S. Existence of three-dimensional generalized solitary waves with gravity and small surface tension.
Phys D, 2009, 238: 1735--1751
[8] Elphick C, Coullet P, Repaux D. Nature of spatial chaos. Phys Rev Lett, 1987, 58: 431--434
[9] Groves M D, Mielke A. A spatial dynamics approach to three-dimensional gravity-capillary steady water waves. Proc Roy Soc Edinburgh Sect, 2001, 131A: 83--136
[10] Hornreich R M, Luban M, Shtrikman S. Critical behaviour at the onset of k-space instability on the λ line. Phys Rev Letters, 1975, 35: 1678
[11] Kalies W D, Kwapisz J, Van der Vorst R A C M. Homotopy classes for stable connections between Hamiltonian saddle-focus equilibria. Commun Math Phys, 1998, 193: 337-371
[12] Kalies W D, Kwapisz J, Van den Berg J B, Van der Vorst R A C M. Homotopy classes for stable periodic and chaotic patterns in fourth-order Hamiltonian systems. Commun Math Phys, 2000, 214: 573--592
[13] Kalies W D, Van der Vorst R A C M. Multitransition homoclinic and heteroclinic solutions of the extended Fisher-kolmogorov equation. J Diff Eqns, 1996, 131: 209--228
[14] Kielh\"{o}fer H. Bifurcation theory: An Introduction with Applications to PDEs. New York: Springer-Verlag, 2003
[15] Kwapisz J. Uniqueness of the stationary wave for the extended Fisher-Kolmogorov equation. J Diff Eqns, 2000, 165: 235--253
[16] Lamb J S W, Roberts J A G. Time-reversal symmetry in dynamical systems: a survey. Phys D, 1998, 112: 1--39
[17] Peletier L A, Troy W C. Spatial Patterns: Higher Order Model Equations in Physics and Mechanics. Boston: Birk\"{a}user, 2001
[18] Pomeau Y, Manneville P. Wavelength selection in cellular flows. Phys Lett, 1980, 75A: 296--298
[19] Rottsch\"{a}fer V, Wayne C E. Existence and stability of traveling fronts in the extended Fisher-Kolmogorov equation.
J Diff Eqns, 2001, 176: 532--560
[20] Smets D, Van den Berg J B. Homoclinic solutions for Swift-Hohenberg and suspension bridge type equations.
J Diff Eqns, 2002, 184: 78--96
[21] Walter W. Gew\"{o}hnliche Differentialgleichungen. New York: Springer-Verlag, 1972
|