[1] Ciarlet J P, Zou J. Fully discrete fnite element approaches for time-dependent Maxwell's equations. Numer Math, 1999, 82: 193--219
[2] Gopalakrishnan J, Pasciak J E, Demkowicz L F. Analysis of a multigrid algorithm for time harmonic Maxwell equations. SIAM J Numer Anal, 2004, 42: 90--108
[3] Monk P. Finite Element Methods for Maxwell's Equations. New York: Oxford University Press, 2003
[4] Gopalakrishnan J, Pasciak J E. Overlapping Schwarz preconditioners for indefnite time harmonic Maxwell's equations. Math Comp, 2003, 72: 1--16
[5] Chen Z M, Du Q, Zou J. Finite element methods with matching and nonmathching meshes for Maxwell equations with discontinuous coefficients. SIAM J Numer Anal, 2000, 37: 1542--1570
[6] Monk P. Analysis of a fnite element method for Maxwell's equations. SIAM J Numer Anal, 1992, 29: 32--56
[7] Greif C, Sch\"{o}tzau D. Preconditioners for the discretized time-harmonic Maxwell equaitons in mixed form. Numer Linear Algebra Appl,2007, 14: 281--297
[8] Greif C, Sch\"{o}tzau D. Preconditioners for saddle point linear systems with highly singular (1,1) blocks. ETNA, 2006, 22: 114--121
[9] Demkowicz L, Vardapetyan L. Modeling of electromagnetic absorption/scattering problem using hp-adaptive finite elements. Comput Methods Appl Mech Engrg, 1998, 152: 103--124
[10] Toselli A. Overlapping Schwarz methods for Maxwell's equations in three dimensions. Numer Math, 2000, 86: 733--752
[11] Perugia I, Sch\"{o}tzau D, Monk P. Stabilized interior penalty methods for the time-harmonic Maxwell equations. Comput Methods Appl Mech Engrg, 2002, 191: 4675--4697
[12] Hu Q, Zou J. Substructuring preconditioners for saddle-point problems arising from Maxwell's equations in three dimensions. Math Comput, 2004, 73: 35--61
[13] N\'{e}d\'{e}lec J C. Mixed finite elements in R3. Numer Math, 1980, 35: 315--341
[14] Benzi M, Golub G H, Liesen J. Numerical solution of saddle point problems. Acta Numer, 2005, 14: 1--137
[15] Saad Y. Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia, PA, 2003
[16] Golub G H, Greif C, Varah J M. An algebraic analysis of a block diagonal preconditioner for saddle point systems. SIAM J Matrix Anal Appl, 2006, 27: 779--792
[17] Greenbaum A. Iterative Methods for Solving Linear Systems. Philadelphia: SIAM, 1997
[18] Cao Z H. Constraint Schuer complement preconditioners for nonsymmetric saddle point problems. Appl Numer Math, 2009, 59: 151--169
[19] Wu S L, Huang T Z, Li L. Block triangular preconditioner for static Maxwell equations. Comp Appl Math, 2011, 30: 589--612
[20] Wu S L, Li C X, Huang T Z. Positive definite triangular preconditioner for the discrete time-harmonic Maxwell equations. J Inform Comput Sci, 2011, 8: 815--825
[21] Bai Z Z. Eigenvalue estimates for saddle point matrices of Hermitian and indefinite leading blocks. J Comput Appl Math, 2013,237: 295--306 |