[1] Adams R A. Sobolev Spaces//Pure and Applied Mathematics, vol 65. Academic Press (A subsidiary of Harcourt Brace Jovanovich, Publishers), New York: London, 1975
[2] Azorero J G, Manfredi J J, Alonso I P. Sobolev versus H\"{o}lder local minimizer and global multiplicity for some
quasilinear elliptic equations. Commun Contemp Math, 2000, 2: 385--404
[3] Brezis H, Nirenberg L. H1 versus C1 local minimizers. C R Acad Sci Paris S\'{e}r I Math, 1993, 317: 465--472
[4] Clarke F H. A new approach to Lagrange multipliers. Math Oper Res, 1976, 1(2): 165--174
[5] Clarke F H. Optimization and Nonsmooth Analysis. New York: Wiley, 1983
[6] Chang K C. Variational methods for nondifferentiable functionals and their applications to partial differential equations. Math J Anal Appl, 1981, 80: 102--129
[7] Fan X L. On the sub-supersolution methods for p(x)-Laplacian equations.J Math Anal Appl, 2007, 330: 665--682
[8] Fan X L. Global C1, α regularity for variable exponent elliptic equations in divergence form. J Differential Equations, 2007, 235: 397--417
[9] Fan X L. Boundary trace embedding theorems for variable exponent Sobolev spaces. J Math Anal Appl, 2008, 339: 1395--1412
[10] Fan X L, Zhao D. A class of de giorgi type and H\"{o}lder continuity. Nonlinear Anal, 1996, 36: 295--318
[11] Fan X L, Zhao D. On the spaces Lp(x) and Wm, p(x). J Math Anal Appl, 2001, 263: 424--446
[12] L. Gasi\'{e}ski and N.S. Papageorgiou, Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems, Chapman and Hall/CRC, Boca Raton (2005)
[13] Guo Z M, Zhang Z T. W1, p versus C1 local minimizers and multiplicity results for quasilinear elliptic equations. J Math Anal Appl, 2003, 286: 32--50
[14] Winkert P. Local C1-minimizers versus local W1, p-minimizers of nonsmooth functionals. Nonlinear Analysis, 2010, 72: 4298--4303 |