[1] Canuto C, Hussaini M Y, Quartesoni A, Zang T A. Spectral Methods: Fundamentals in Single Domains. Berlin: Springer, 2006
[2] 陈娟, 张鲁明. Klein-Gordon-Zakharov方程的一类初边值问题的数值解. 数学物理学报, 2009, 29A(2): 494--504
[3] Bao Weizhu, Sun Fangfang, Wei G W. Numerical methods for the generalized {Z}akharov system. J Comput Phys, 2003, 190(1): 201--228
[4] Bao Weizhu, Sun Fangfang. Efficient and stable numerical methods for the generalized and vector Zakharov system.
SIAM J Sci Comput (electronic), 2005, 26(3): 1057--1088
[5] Chang Qianshun, Guo Boling, Jiang Hong. Finite difference method for generalized {Z}akharov equations. Math Comp, 1995, 64(210): 537--553
[6] Chang Qianshun, Jiang Hong. A conservative difference scheme for the {Z}akharov equations. J Comput Phys, 1994, 113(2): 309--319
[7] Glassey R~T. Approximate solutions to the {Z}akharov equations via finite differences. J Comput Phys, 1992, 100(2): 377--383
[8] Glassey R~T. Convergence of an energy-preserving scheme for the {Z}akharov equations in one space dimension.
Math Comp, 1992, 58(197): 83--102
[9] Jin Shi, Markowich P A, Zheng Chunxiong. Numerical simulation of a generalized Zakharov system. J Comput Phys, 2004, 201(1): 376--395
[10] Jin Shi, Zheng Chunxiong. A time-splitting spectral method for the generalized {Z}akharov system in multi-dimensions. J Sci Comput, 2006, 26(2): 127--149
[11] Payne G~L, Nicholson D~R, Downie R M. Numerical solution of the {Z}akharov equations. J Comput Phys, 1983, 50(3): 482--498
[12] Bao Weizhu, Yang Li. Efficient and accurate numerical methods for the {K}lein-{G}ordon-{S}chr\"odinger equations.
J Comput Phys, 2007, 225(2): 1863--1893
[13] Wang Tingchun, Chen Juan, Zhang Luming.Conservative difference methods for the {K}lein-{G}ordon-{Z}akharov equations. J Comput Appl Math, 2007, 205(1): 430--452
[14] Xia Yinhua, Xu Yan, Shu Chi-Wang.Local discontinuous {G}alerkin methods for the generalized {Z}akharov system.
J Comput Phys, 2010, 229(4): 1238--1259 |