数学物理学报 ›› 2013, Vol. 33 ›› Issue (3): 424-430.

• 论文 • 上一篇    下一篇

非光滑泛函的局部C1(Ω) -极小对W1, p(x)(Ω) -极小

代国伟|达婷   

  1. 西北师范大学 数学与统计学院 兰州 730070
  • 收稿日期:2011-11-02 修回日期:2012-11-08 出版日期:2013-06-25 发布日期:2013-06-25
  • 基金资助:

    国家自然科学基金(11261052, 11101335)资助

Local C1(Ω) -minimizers Versus W1, p(x)(Ω)-minimizers of Nonsmooth Functionals

 DAI Guo-Wei, DA Ting   

  1. Department of Mathematics, Northwest Normal University, Gansu Lanzhou 730070
  • Received:2011-11-02 Revised:2012-11-08 Online:2013-06-25 Published:2013-06-25
  • Supported by:

    国家自然科学基金(11261052, 11101335)资助

摘要:

研究如下的非可微泛函
J(u)=∫Ω1/p(x)(|∨u|p(x)+|u|p(x))dx+∫Ω j1(x, u)dx+∫∂Ωj2(xγu)dσ,
其中p(x)∈ C0, β(Ω), β∈(0,1), 1<p-p+<+∞, j1: Ω×R→R 和j2: ∂Ω×R→R 是局部Lipschitz 函数. 该文证明了J 的局部C1(Ω) -极小一定是J 的局部W1, p(x)(Ω)  -极小.

关键词: 非光滑泛函, 局部极小, 变指数

Abstract:

In this paper, we study not necessarily differentiable functionals of the form
J(u)=∫Ω1/p(x)(|∨u|p(x)+|u|p(x))dx+∫Ω j1(x, u)dx+∫∂Ωj2(xγu)dσ,
where p(x)∈ C0, β(Ω), with β∈(0,1),  and 1<p-p+<+∞, j1: Ω×R→R as well as j2: ∂Ω×R→R are locally Lipschitz functions. We prove that local C1(Ω)-minimizers of J must be local W1, p(x)(Ω)-minimizers of J.

Key words: Nonsmooth functionals, Local minimizers, Variable exponent

中图分类号: 

  • 35R70